Photo AI

Figure 1 shows a sketch of triangle ABC - Edexcel - A-Level Maths Pure - Question 7 - 2021 - Paper 1

Question icon

Question 7

Figure-1-shows-a-sketch-of-triangle-ABC-Edexcel-A-Level Maths Pure-Question 7-2021-Paper 1.png

Figure 1 shows a sketch of triangle ABC. Given that • AB = -3i - 4j - 5k • BC = i + j + 4k (a) find AC (b) show that cosABC = \frac{9}{10}

Worked Solution & Example Answer:Figure 1 shows a sketch of triangle ABC - Edexcel - A-Level Maths Pure - Question 7 - 2021 - Paper 1

Step 1

find AC

96%

114 rated

Answer

To find the vector \vec{AC}, we can use the relationship:

AC=AB+BC\vec{AC} = \vec{AB} + \vec{BC}

Given:

  • \vec{AB} = -3i - 4j - 5k
  • \vec{BC} = i + j + 4k

Now we compute \vec{AC}:

AC=(3i4j5k)+(i+j+4k)\vec{AC} = (-3i - 4j - 5k) + (i + j + 4k)

Combining the like terms:

  • For the i component: (-3 + 1 = -2)
  • For the j component: (-4 + 1 = -3)
  • For the k component: (-5 + 4 = -1)

Thus, we have:

AC=2i3j1k\vec{AC} = -2i - 3j - 1k

Step 2

show that cosABC = 9/10

99%

104 rated

Answer

To find ( \cos \angle ABC ), we can use the formula:

cosθ=ABBCABBC\cos \theta = \frac{\vec{AB} \cdot \vec{BC}}{||\vec{AB}|| \cdot ||\vec{BC}||}

First, we need to calculate the dot product ( \vec{AB} \cdot \vec{BC} ):

ABBC=(3)(1)+(4)(1)+(5)(4)=3420=27\vec{AB} \cdot \vec{BC} = (-3)(1) + (-4)(1) + (-5)(4) = -3 - 4 - 20 = -27

Next, we find the magnitudes of both vectors:

  1. Magnitude of ( \vec{AB} ):
AB=(3)2+(4)2+(5)2=9+16+25=50=52||\vec{AB}|| = \sqrt{(-3)^2 + (-4)^2 + (-5)^2} = \sqrt{9 + 16 + 25} = \sqrt{50} = 5\sqrt{2}
  1. Magnitude of ( \vec{BC} ):
BC=(1)2+(1)2+(4)2=1+1+16=18=32||\vec{BC}|| = \sqrt{(1)^2 + (1)^2 + (4)^2} = \sqrt{1 + 1 + 16} = \sqrt{18} = 3\sqrt{2}

Now substituting back into the formula:

cosABC=27(52)(32)=2730=910\cos \angle ABC = \frac{-27}{(5\sqrt{2})(3\sqrt{2})} = \frac{-27}{30} = -\frac{9}{10}

Since the angle is acute, we take the positive value:

cosABC=910\cos ABC = \frac{9}{10}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;