Photo AI

2. (a) Differentiate with respect to x (i) 3 sin² x + sec 2x tan 2x, (ii) {x + ln(2x)}² - Edexcel - A-Level Maths Pure - Question 3 - 2005 - Paper 5

Question icon

Question 3

2.-(a)-Differentiate-with-respect-to-x-(i)-3-sin²-x-+-sec-2x-tan-2x,-(ii)-{x-+-ln(2x)}²-Edexcel-A-Level Maths Pure-Question 3-2005-Paper 5.png

2. (a) Differentiate with respect to x (i) 3 sin² x + sec 2x tan 2x, (ii) {x + ln(2x)}². Given that y = \frac{5x^3 - 10x + 9}{(x-1)^3}, \ x \neq 1, (b) show that \... show full transcript

Worked Solution & Example Answer:2. (a) Differentiate with respect to x (i) 3 sin² x + sec 2x tan 2x, (ii) {x + ln(2x)}² - Edexcel - A-Level Maths Pure - Question 3 - 2005 - Paper 5

Step 1

(i) 3 sin² x + sec 2x tan 2x

96%

114 rated

Answer

Differentiation Process: To differentiate the expression, we can apply the following rules:

  1. Product Rule for terms that are products of functions.
  2. Chain Rule for composite functions.

Step 1: Differentiate 3 sin² x: Using the chain rule: ddx[3sin2x]=32sinxcosx=6sinxcosx\frac{d}{dx} [3 \sin^2 x] = 3 \cdot 2 \sin x \cdot \cos x = 6 \sin x \cos x

Step 2: Differentiate sec 2x tan 2x: For this, we will also apply the product rule: Let ( u = \sec 2x ) and ( v = \tan 2x ). dvdx=2sec2(2x)anddudx=2sec(2x)tan(2x)\frac{dv}{dx} = 2\sec^2(2x) \quad \text{and} \quad \frac{du}{dx} = 2\sec(2x)\tan(2x)

Then, d(uv)dx=udvdx+vdudx=sec(2x)2sec2(2x)+tan(2x)2sec(2x)tan(2x)\frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} = \sec(2x) \cdot 2\sec^2(2x) + \tan(2x) \cdot 2\sec(2x)\tan(2x)

Combining all, we get: \frac{d}{dx}[3 \sin^2 x + \sec 2x \tan 2x] = 6 \sin x \cos x + \sec(2x)ig(2\sec^2(2x) + 2\tan^2(2x)\big)

Step 2

(ii) {x + ln(2x)}²

99%

104 rated

Answer

Differentiation Process: Applying the chain rule:

Step 1: Differentiate the outer function: If ( y = (x + \ln(2x))^2 ), then: dydx=2(x+ln(2x))ddx(x+ln(2x))\frac{dy}{dx} = 2(x + \ln(2x)) \cdot \frac{d}{dx}(x + \ln(2x))

Step 2: Differentiate the inner function: Using the derivative of log, we have: ddx(x+ln(2x))=1+12x2=1+1x\frac{d}{dx}(x + \ln(2x)) = 1 + \frac{1}{2x} \cdot 2 = 1 + \frac{1}{x}

Final Result: Thus, dydx=2(x+ln(2x))(1+1x)\frac{dy}{dx} = 2(x + \ln(2x)) \left( 1 + \frac{1}{x} \right)

Step 3

show that dy/dx = -8/(x-1)²

96%

101 rated

Answer

Step 1: Differentiate the numerator: Using the polynomial rule: ddx[5x310x+9]=15x210\frac{d}{dx}[5x^3 - 10x + 9] = 15x^2 - 10

Step 2: Differentiate the denominator: For the denominator, we have: ddx[(x1)3]=3(x1)2\frac{d}{dx}[(x-1)^3] = 3(x-1)^2

Step 3: Using the Quotient Rule: The quotient rule states: dydx=f(x)g(x)f(x)g(x)[g(x)]2\frac{dy}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}. Thus: dydx=(15x210)(x1)3(5x310x+9)3(x1)2[(x1)3]2\frac{dy}{dx} = \frac{(15x^2 - 10)(x-1)^3 - (5x^3 - 10x + 9)3(x-1)^2}{[(x-1)^3]^2}

Step 4: Simplifying: After simplifying the expression: =8(x1)2= -\frac{8}{(x-1)^2} Hence, we have shown the required result.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;