Photo AI

f(x) = 5 ext{cos}x + 12 ext{sin}x Given that f(x) = R ext{cos}(x - eta), where R > 0 and 0 < eta < \frac{\pi}{2} - Edexcel - A-Level Maths Pure - Question 3 - 2008 - Paper 5

Question icon

Question 3

f(x)-=-5-ext{cos}x-+-12-ext{sin}x-Given-that-f(x)-=-R-ext{cos}(x---eta),-where-R->-0-and-0-<-eta-<-\frac{\pi}{2}-Edexcel-A-Level Maths Pure-Question 3-2008-Paper 5.png

f(x) = 5 ext{cos}x + 12 ext{sin}x Given that f(x) = R ext{cos}(x - eta), where R > 0 and 0 < eta < \frac{\pi}{2}. (a) find the value of R and the value of \alpha ... show full transcript

Worked Solution & Example Answer:f(x) = 5 ext{cos}x + 12 ext{sin}x Given that f(x) = R ext{cos}(x - eta), where R > 0 and 0 < eta < \frac{\pi}{2} - Edexcel - A-Level Maths Pure - Question 3 - 2008 - Paper 5

Step 1

find the value of R and the value of \alpha to 3 decimal places.

96%

114 rated

Answer

To find R, we can use the formula:

R=a2+b2=52+122=25+144=169=13.R = \sqrt{a^2 + b^2} = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13.

To find \alpha, we use the relationship:

tanα=ba=125.\tan \alpha = \frac{b}{a} = \frac{12}{5}.

Calculating \alpha:

α=tan1(125)1.176.\alpha = \tan^{-1}\left(\frac{12}{5}\right) \approx 1.176.

Step 2

Hence solve the equation 5 ext{cos}x + 12 ext{sin}x = 6

99%

104 rated

Answer

We start with:

cos(xα)=613.\cos(x - \alpha) = \frac{6}{13}.

This implies:

xα=arccos(613)1.091.x - \alpha = \arccos\left(\frac{6}{13}\right) \approx 1.091.

Hence, we find:

x=1.091+1.176=2.267.x = 1.091 + 1.176 = 2.267.

We must also consider the cosine symmetry, thus:

xα=arccos(613)x=1.091+1.176=0.085.x - \alpha = -\arccos\left(\frac{6}{13}\right) \Rightarrow x = -1.091 + 1.176 = 0.085.

Both solutions must be within the interval [0, 2\pi). Therefore, valid solutions are:

  • x2.267x \approx 2.267
  • x0.084.x \approx 0.084.

Step 3

Write down the maximum value of 5 ext{cos}x + 12 ext{sin}x.

96%

101 rated

Answer

The maximum value occurs when:

Rmax=R=13.R_{max} = R = 13.

Step 4

Find the smallest positive value of x for which this maximum value occurs.

98%

120 rated

Answer

The maximum occurs when:

cos(xα)=1xα=0x=α1.176.\cos(x - \alpha) = 1 \Rightarrow x - \alpha = 0 \Rightarrow x = \alpha \approx 1.176.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;