To find the area of the shaded region R:
- Identify the integral bounds from x=−4 to x=2.
- Calculate the area using the integral:
Area=∫−42(10−(x2+2x+2))dx
This simplifies to:
∫−42(10−x2−2x−2)dx=∫−42(8−x2−2x)dx
- Now compute the integral:
=[8x−3x3−x2]−42
- Evaluating at the bounds:
- At x=2:
8(2)−323−(2)2=16−38−4=12−38=336−8=328
- At x=−4:
8(−4)−3(−4)3−(−4)2=−32+364−16=−48+364=−3144+364=−380
- Now, subtract:
328−(−380)=328+80=3108=36
Thus, the area of the region R is 36.