Photo AI

5. (i) Differentiate with respect to $x$ (a) $y = x^2 ext{ln } 2x$ (b) $y = (x + ext{sin } 2x)^3$ Given that $x = ext{cot } y$, (ii) show that $\frac{dy}{dx} = \frac{-1}{1+x^2}$ - Edexcel - A-Level Maths Pure - Question 26 - 2013 - Paper 1

Question icon

Question 26

5.-(i)-Differentiate-with-respect-to-$x$----(a)-$y-=-x^2--ext{ln-}-2x$---(b)-$y-=-(x-+--ext{sin-}-2x)^3$----Given-that-$x-=--ext{cot-}-y$,---(ii)-show-that-$\frac{dy}{dx}-=-\frac{-1}{1+x^2}$-Edexcel-A-Level Maths Pure-Question 26-2013-Paper 1.png

5. (i) Differentiate with respect to $x$ (a) $y = x^2 ext{ln } 2x$ (b) $y = (x + ext{sin } 2x)^3$ Given that $x = ext{cot } y$, (ii) show that $\frac{dy... show full transcript

Worked Solution & Example Answer:5. (i) Differentiate with respect to $x$ (a) $y = x^2 ext{ln } 2x$ (b) $y = (x + ext{sin } 2x)^3$ Given that $x = ext{cot } y$, (ii) show that $\frac{dy}{dx} = \frac{-1}{1+x^2}$ - Edexcel - A-Level Maths Pure - Question 26 - 2013 - Paper 1

Step 1

(a) Differentiate $y = x^2 \text{ln } 2x$

96%

114 rated

Answer

To differentiate this function, we will apply the product rule:
If u=x2u = x^2 and v=ln 2xv = \text{ln } 2x, then the product rule states that
dydx=uv+uv\frac{dy}{dx} = u'v + uv'
Calculating the derivatives, we get:

  • u=2xu' = 2x
  • v=12x2=1xv' = \frac{1}{2x} \cdot 2 = \frac{1}{x} (using the chain rule for extln2x ext{ln } 2x).
    Now substituting back into the product rule yields:
    dydx=2xln 2x+x21x\frac{dy}{dx} = 2x \cdot \text{ln } 2x + x^2 \cdot \frac{1}{x}
    This simplifies to:
    dydx=2xln 2x+x\frac{dy}{dx} = 2x \cdot \text{ln } 2x + x.

Step 2

(b) Differentiate $y = (x + \text{sin } 2x)^3$

99%

104 rated

Answer

For this function, we will use the chain rule. Let u=x+sin 2xu = x + \text{sin } 2x, then y=u3y = u^3. The derivative using the chain rule is:
dydx=3u2dudx\frac{dy}{dx} = 3u^2 \cdot \frac{du}{dx}
Now we need to find dudx\frac{du}{dx}:
dudx=1+2cos 2x\frac{du}{dx} = 1 + 2\text{cos } 2x
Substituting back, we have:
dydx=3(x+sin 2x)2(1+2cos 2x)\frac{dy}{dx} = 3(x + \text{sin } 2x)^2(1 + 2\text{cos } 2x).

Step 3

(ii) Given that $x = \text{cot } y$, show that $\frac{dy}{dx} = \frac{-1}{1+x^2}$

96%

101 rated

Answer

To solve this, we start with the relationship x=cot yx = \text{cot } y. We will differentiate both sides with respect to xx:
dxdy=cosec2y\frac{dx}{dy} = -\text{cosec}^2 y
From this, we find dydx\frac{dy}{dx}:
dydx=1cosec2y\frac{dy}{dx} = -\frac{1}{\text{cosec}^2 y}
Next, using the identity cosec2y=1+cot2y\text{cosec}^2 y = 1 + \text{cot}^2 y, we can replace extcosec2y ext{cosec}^2 y:
dydx=11+cot2y\frac{dy}{dx} = -\frac{1}{1 + \text{cot}^2 y}
Since x=cotyx = \text{cot} y, we have dydx=11+x2\frac{dy}{dx} = -\frac{1}{1 + x^2}.
Thus, we have shown the required result.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;