Using the given mass function, we differentiate:
dtdm=−kpe−kt
Substituting for k and p:
dtdm=−(−41ln(3))(7.5)e−(−41ln(3))t
Equating to −0.6ln3 gives:
−41ln(3)×7.5e41ln(3)t=−0.6ln(3)
Solving for t:
e41ln(3)t=7.50.6⋅4
Letting x=e41ln(3)t, we find:
t \approx 4.146 \text{or around } 4.1$$