Photo AI

The curve C has parametric equations $x = 2 \, ext{cos} \, t, \quad y = \sqrt{3} \, \text{cos} \, 2t, \quad 0 \leq t \leq \pi$ (a) Find an expression for $\frac{dy}{dx}$ in terms of $t$ - Edexcel - A-Level Maths Pure - Question 15 - 2017 - Paper 1

Question icon

Question 15

The-curve-C-has-parametric-equations--$x-=-2-\,--ext{cos}-\,-t,-\quad-y-=-\sqrt{3}-\,-\text{cos}-\,-2t,-\quad-0-\leq-t-\leq-\pi$--(a)-Find-an-expression-for-$\frac{dy}{dx}$-in-terms-of-$t$-Edexcel-A-Level Maths Pure-Question 15-2017-Paper 1.png

The curve C has parametric equations $x = 2 \, ext{cos} \, t, \quad y = \sqrt{3} \, \text{cos} \, 2t, \quad 0 \leq t \leq \pi$ (a) Find an expression for $\frac{d... show full transcript

Worked Solution & Example Answer:The curve C has parametric equations $x = 2 \, ext{cos} \, t, \quad y = \sqrt{3} \, \text{cos} \, 2t, \quad 0 \leq t \leq \pi$ (a) Find an expression for $\frac{dy}{dx}$ in terms of $t$ - Edexcel - A-Level Maths Pure - Question 15 - 2017 - Paper 1

Step 1

Find an expression for $\frac{dy}{dx}$ in terms of $t$.

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we first compute dydt\frac{dy}{dt} and dxdt\frac{dx}{dt}.

Starting with:

x=2costdxdt=2sintx = 2 \cos t \quad \Rightarrow \quad \frac{dx}{dt} = -2 \sin t

y=3cos2tdydt=23sin2ty = \sqrt{3} \cos 2t \quad \Rightarrow \quad \frac{dy}{dt} = -2\sqrt{3} \sin 2t

Using the chain rule, we can express dydx\frac{dy}{dx} as:

dydx=dydtdxdt=23sin2t2sint=3sin2tsint\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-2\sqrt{3} \sin 2t}{-2 \sin t} = \frac{\sqrt{3} \sin 2t}{\sin t}

Using the double angle identity sin2t=2sintcost\sin 2t = 2 \sin t \cos t, we can simplify:

dydx=32sintcostsint=23cost\frac{dy}{dx} = \frac{\sqrt{3} \cdot 2 \sin t \cos t}{\sin t} = 2\sqrt{3} \cos t

Step 2

Show that an equation for l is $2x - 2\sqrt{3}y - 1 = 0$.

99%

104 rated

Answer

To find the coordinates of point P when t=2π3t = \frac{2\pi}{3}:

x=2cos(2π3)=212=1x = 2 \cos\left( \frac{2\pi}{3} \right) = 2 \cdot -\frac{1}{2} = -1

y=3cos(22π3)=3cos(4π3)=312=32y = \sqrt{3} \cos\left( 2 \cdot \frac{2\pi}{3} \right) = \sqrt{3} \cdot \cos\left( \frac{4\pi}{3} \right) = \sqrt{3} \cdot -\frac{1}{2} = -\frac{\sqrt{3}}{2}

Thus, the coordinates of P are ((-1, -\frac{\sqrt{3}}{2})).

The gradient of line l, being the negative reciprocal of the gradient of C at P, is:

The existing gradient is 232\sqrt{3}, hence:

slope of l=123\text{slope of l} = -\frac{1}{2\sqrt{3}}

Using the point-slope form, we have:

y(32)=123(x(1))y - (-\frac{\sqrt{3}}{2}) = -\frac{1}{2\sqrt{3}}(x - (-1))

After simplification,

2y+3=123x1232y + \sqrt{3} = -\frac{1}{2\sqrt{3}}x - \frac{1}{2\sqrt{3}}

Thus, multiplying through by 232\sqrt{3} gives:

43y+3=x14\sqrt{3}y + 3 = -x - 1

Rearranging gives:

2x23y1=02x - 2\sqrt{3}y - 1 = 0

Step 3

Find the exact coordinates of Q.

96%

101 rated

Answer

Substituting x=2costx = 2 \cos t and y=3cos2ty = \sqrt{3} \cos 2t into 2x23y1=02x - 2\sqrt{3}y - 1 = 0:

2(2cost)23(3cos2t)1=02(2 \cos t) - 2\sqrt{3} (\sqrt{3} \cos 2t) - 1 = 0

This simplifies to:

4cost6cos2t1=04 \cos t - 6 \cos 2t - 1 = 0

Using the identity cos2t=2cos2t1\cos 2t = 2\cos^2 t - 1, we rewrite the equation:

4cost6(2cos2t1)1=04 \cos t - 6(2\cos^2 t - 1) - 1 = 0

which translates to:

12cos2t+10cost5=0-12\cos^2 t + 10\cos t - 5 = 0

Factoring or using the quadratic formula:

Let u=costu = \cos t. Solving:

12u210u+5=012u^2 - 10u + 5 = 0

We apply the quadratic formula:

u=(10)±(10)24125212=10±10024024u = \frac{-(-10) \pm \sqrt{(-10)^2 - 4 \cdot 12 \cdot 5}}{2 \cdot 12} = \frac{10 \pm \sqrt{100 - 240}}{24}

After simplification, we find:

u=56 or 13u =\frac{5}{6} \text{ or }\frac{-1}{3}

Choosing cost=56\cos t = \frac{5}{6} (the valid value), we then find:

Consequently:

x=256=53,y=3cos(2t)=31(56)2x = 2 \cdot \frac{5}{6} = \frac{5}{3}, \quad y = \sqrt{3} \cdot \cos(2t) = \sqrt{3} \cdot \sqrt{1 - \left(\frac{5}{6}\right)^2}

Thus, substituting to find the coordinates of Q gives:

Q=(53,7183)Q = \left(\frac{5}{3}, \frac{7}{18 \sqrt{3}}\right)

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;