Photo AI

Figure 1 shows a sketch of the curve with equation $y = x \, ext{ln} \, x$, $x > 1$ - Edexcel - A-Level Maths Pure - Question 3 - 2010 - Paper 7

Question icon

Question 3

Figure-1-shows-a-sketch-of-the-curve-with-equation-$y-=-x-\,--ext{ln}-\,-x$,-$x->-1$-Edexcel-A-Level Maths Pure-Question 3-2010-Paper 7.png

Figure 1 shows a sketch of the curve with equation $y = x \, ext{ln} \, x$, $x > 1$. The finite region $R$, shown shaded in Figure 1, is bounded by the curve, the x... show full transcript

Worked Solution & Example Answer:Figure 1 shows a sketch of the curve with equation $y = x \, ext{ln} \, x$, $x > 1$ - Edexcel - A-Level Maths Pure - Question 3 - 2010 - Paper 7

Step 1

Complete the table with the values of $y$ corresponding to $x = 2$ and $x = 2.5$

96%

114 rated

Answer

To find the values of yy for x=2x=2 and x=2.5x=2.5:

  1. For x=2x=2, we calculate:

    y \approx 1.386.$$ Therefore, the value of $y$ when $x=2$ is approximately $1.386$.
  2. For x=2.5x=2.5, we calculate:

    y \approx 2.291.$$ Therefore, the value of $y$ when $x=2.5$ is approximately $2.291$.

Step 2

Use the trapezium rule to obtain an estimate for the area of $R$

99%

104 rated

Answer

To use the trapezium rule, we apply the formula:

Ah2(y0+2i=1n1yi+yn),A \approx \frac{h}{2} \left( y_0 + 2 \sum_{i=1}^{n-1} y_i + y_n \right),

where:

  • hh is the distance between the xx values, and
  • yiy_i are the corresponding values of yy.

Here, we calculate:
A0.252(0+2(0.608+1.386+2.291+3.296+4.385+5.545))(a).A \approx \frac{0.25}{2} \left( 0 + 2(0.608 + 1.386 + 2.291 + 3.296 + 4.385 + 5.545)\right) \approx (a).
Giving the answer to 2 decimal places, the area of RR is approximately 7.37\approx 7.37.

Step 3

Use integration by parts to find $\int x \, \text{ln} \, x \, dx$

96%

101 rated

Answer

Here, we can use the integration by parts formula:

udv=uvvdu\int u \, dv = uv - \int v \, du.

Let:

  • u=lnxu = \text{ln} \, x
  • dv=xdxdv = x \, dx

Thus, we find:

  • du=1xdxdu = \frac{1}{x} \, dx
  • v=x22v = \frac{x^2}{2}

Now applying integration by parts:

xlnxdx=x22lnxx221xdx\int x \, \text{ln} \, x \, dx = \frac{x^2}{2} \text{ln} \, x - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx

This simplifies to:

=x22lnx12xdx=x22lnx14x2+C.= \frac{x^2}{2} \text{ln} \, x - \frac{1}{2} \int x \, dx = \frac{x^2}{2} \text{ln} \, x - \frac{1}{4} x^2 + C.

Step 4

Hence find the exact area of $R$

98%

120 rated

Answer

Using the integral from 1 to 4:

14xlnxdx=[x22lnx14x2]14.\int_1^4 x \, \text{ln} \, x \, dx = \left[ \frac{x^2}{2} \text{ln} \, x - \frac{1}{4} x^2 \right]_1^4.

Calculating this:

  1. At x=4x=4:

    422ln414(42)=8ln44.\frac{4^2}{2} \text{ln} \, 4 - \frac{1}{4} (4^2) = 8 \text{ln} \, 4 - 4.

  2. At x=1x=1:

    122ln114(12)=014=14. \frac{1^2}{2} \text{ln} \, 1 - \frac{1}{4} (1^2) = 0 - \frac{1}{4} = -\frac{1}{4}.

So, the area of RR is: =(8ln44)(14)=8ln4154.= \left( 8 \text{ln} \, 4 - 4 \right) - ( -\frac{1}{4}) = 8 \text{ln} \, 4 - \frac{15}{4}.

This can be summarized as: Area=14(aln2+b), \text{Area} = \frac{1}{4}(a \text{ln} \, 2 + b), where a=64a = 64 and b=15.b = -15.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;