Photo AI

Given that $$\frac{3x^4 - 2x^3 - 5x^2 - 4}{x^2 - 4} \equiv ax^2 + bx + c + \frac{dx + e}{x^2 - 4}, \quad x \neq \pm 2$$ find the values of the constants a, b, c, d and e. - Edexcel - A-Level Maths Pure - Question 3 - 2013 - Paper 7

Question icon

Question 3

Given-that--$$\frac{3x^4---2x^3---5x^2---4}{x^2---4}-\equiv-ax^2-+-bx-+-c-+-\frac{dx-+-e}{x^2---4},-\quad-x-\neq-\pm-2$$--find-the-values-of-the-constants-a,-b,-c,-d-and-e.-Edexcel-A-Level Maths Pure-Question 3-2013-Paper 7.png

Given that $$\frac{3x^4 - 2x^3 - 5x^2 - 4}{x^2 - 4} \equiv ax^2 + bx + c + \frac{dx + e}{x^2 - 4}, \quad x \neq \pm 2$$ find the values of the constants a, b, c, d... show full transcript

Worked Solution & Example Answer:Given that $$\frac{3x^4 - 2x^3 - 5x^2 - 4}{x^2 - 4} \equiv ax^2 + bx + c + \frac{dx + e}{x^2 - 4}, \quad x \neq \pm 2$$ find the values of the constants a, b, c, d and e. - Edexcel - A-Level Maths Pure - Question 3 - 2013 - Paper 7

Step 1

Using Long Division

96%

114 rated

Answer

To find the constants a, b, c, d, and e, we will perform polynomial long division of the numerator by the denominator:

  1. Divide the leading term of the numerator, 3x43x^4, by the leading term of the denominator, x2x^2, which gives us 3x23x^2.

  2. Multiply 3x23x^2 by the entire denominator x24x^2 - 4, resulting in 3x412x23x^4 - 12x^2.

  3. Subtract this from the original numerator:

    (3x42x35x24)(3x412x2)=2x3+7x24\left(3x^4 - 2x^3 - 5x^2 - 4\right) - \left(3x^4 - 12x^2\right) = -2x^3 + 7x^2 - 4

  4. Next, repeat the process: Divide 2x3-2x^3 by x2x^2, yielding 2x-2x.

  5. Multiply 2x-2x by x24x^2 - 4 resulting in 2x3+8x-2x^3 + 8x.

  6. Subtract this:

    (2x3+7x24)(2x3+8x)=7x28x4\left(-2x^3 + 7x^2 - 4\right) - \left(-2x^3 + 8x\right) = 7x^2 - 8x - 4

  7. Finally, divide 7x27x^2 by x2x^2 giving 77.

  8. Multiply 77 by x24x^2 - 4, resulting in 7x2287x^2 - 28.

  9. Subtract:

    (7x28x4)(7x228)=8x+24\left(7x^2 - 8x - 4\right) - \left(7x^2 - 28\right) = -8x + 24

  10. Now we have:

3x42x35x24x24=3x22x+7+8x+24x24\frac{3x^4 - 2x^3 - 5x^2 - 4}{x^2 - 4} = 3x^2 - 2x + 7 + \frac{-8x + 24}{x^2 - 4}

Step 2

Identify Constants

99%

104 rated

Answer

Comparing this with the provided expression:

ax2+bx+c+dx+ex24ax^2 + bx + c + \frac{dx + e}{x^2 - 4}

we can directly match the coefficients:

  • From 3x23x^2, we have: a=3a = 3
  • From 2x-2x, we have: b=2b = -2
  • From the constant term 77, we have: c=7c = 7
  • From 8x-8x, we have: d=8d = -8
  • From 2424, we have: e=24e = 24.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;