Photo AI

4. (a) Express $6 \, ext{cos} \, heta + 8 \, ext{sin} \, heta$ in the form $R \text{cos}(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 25 - 2013 - Paper 1

Question icon

Question 25

4.-(a)-Express-$6-\,--ext{cos}-\,--heta-+-8-\,--ext{sin}-\,--heta$-in-the-form-$R-\text{cos}(\theta---\alpha)$,-where-$R->-0$-and-$0-<-\alpha-<-\frac{\pi}{2}$-Edexcel-A-Level Maths Pure-Question 25-2013-Paper 1.png

4. (a) Express $6 \, ext{cos} \, heta + 8 \, ext{sin} \, heta$ in the form $R \text{cos}(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. G... show full transcript

Worked Solution & Example Answer:4. (a) Express $6 \, ext{cos} \, heta + 8 \, ext{sin} \, heta$ in the form $R \text{cos}(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 25 - 2013 - Paper 1

Step 1

Express $6 \, \text{cos} \, \theta + 8 \, \text{sin} \, \theta$ in the form $R \text{cos}(\theta - \alpha)$

96%

114 rated

Answer

To express 6cosθ+8sinθ6 \, \text{cos} \, \theta + 8 \, \text{sin} \, \theta in the form Rcos(θα)R \text{cos}(\theta - \alpha), we first find RR using the Pythagorean theorem:

R=62+82=36+64=100=10.R = \sqrt{6^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10.

Next, we calculate α\alpha using the tangent function:

tan(α)=86=43.\tan(\alpha) = \frac{8}{6} = \frac{4}{3}.

Thus, we find:

$$\alpha = \arctan\left(\frac{4}{3}\right) \approx 0.927 \text{ (to 3 decimal places)}.$

Step 2

Calculate (i) the maximum value of $p(\theta)$

99%

104 rated

Answer

To find the maximum value of p(θ)p(\theta), we rewrite the function:

p(θ)=412+10cos(θα)p(\theta) = \frac{4}{12 + 10\cos(\theta - \alpha)}

The maximum value occurs when the denominator is minimized, which happens when cos(θα)=1\cos(\theta - \alpha) = -1:

Minimum 12+10(1)=2.\text{Minimum } 12 + 10(-1) = 2.

Thus, the maximum value of p(θ)p(\theta) is:

p(θ)=42=2.p(\theta) = \frac{4}{2} = 2.

Step 3

Calculate (ii) the value of $\theta$ at which the maximum occurs

96%

101 rated

Answer

The maximum occurs when:

cos(θα)=1.\cos(\theta - \alpha) = -1.

This results in:

θα=πθ=π+α.\theta - \alpha = \pi \\ \Rightarrow \theta = \pi + \alpha.

Substituting the value of α\alpha:

θ=π+0.9274.07.\theta = \pi + 0.927 \approx 4.07.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;