Photo AI

6. (a) (i) By writing $3\theta = (2\theta + \theta)$, show that $$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$ (ii) Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve $$8 \sin^3 \theta - 6 \sin \theta + 1 = 0.$$ Give your answers in terms of $\pi$ - Edexcel - A-Level Maths Pure - Question 8 - 2009 - Paper 2

Question icon

Question 8

6.-(a)-(i)-By-writing-$3\theta-=-(2\theta-+-\theta)$,-show-that-$$\sin-3\theta-=-3-\sin-\theta---4-\sin^3-\theta.$$---(ii)-Hence,-or-otherwise,-for-$0-<-\theta-<-\frac{\pi}{3}$,-solve-$$8-\sin^3-\theta---6-\sin-\theta-+-1-=-0.$$---Give-your-answers-in-terms-of-$\pi$-Edexcel-A-Level Maths Pure-Question 8-2009-Paper 2.png

6. (a) (i) By writing $3\theta = (2\theta + \theta)$, show that $$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$ (ii) Hence, or otherwise, for $0 < \theta < \fr... show full transcript

Worked Solution & Example Answer:6. (a) (i) By writing $3\theta = (2\theta + \theta)$, show that $$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$ (ii) Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve $$8 \sin^3 \theta - 6 \sin \theta + 1 = 0.$$ Give your answers in terms of $\pi$ - Edexcel - A-Level Maths Pure - Question 8 - 2009 - Paper 2

Step 1

By writing $3\theta = (2\theta + \theta)$, show that $\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$

96%

114 rated

Answer

To show this, we use the sine addition formula:

sin(2θ+θ)=sin2θcosθ+cos2θsinθ.\sin(2\theta + \theta) = \sin 2\theta \cos \theta + \cos 2\theta \sin \theta.
We know:

  • sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta
  • cos2θ=12sin2θ\cos 2\theta = 1 - 2 \sin^2 \theta.

Substituting these into the equation yields:

$$\sin 3\theta = (2 \sin \theta \cos \theta) \cos \theta + (1 - 2 \sin^2 \theta) \sin \theta.\ $

This simplifies to:

$$\sin 3\theta = 2 \sin \theta \cos^2 \theta + \sin \theta - 2 \sin^3 \theta.\ Usingtheidentity Using the identity\cos^2 \theta = 1 - \sin^2 \theta$ gives:

sin3θ=2sinθ(1sin2θ)+sinθ2sin3θ=3sinθ4sin3θ.\sin 3\theta = 2 \sin \theta (1 - \sin^2 \theta) + \sin \theta - 2 \sin^3 \theta = 3 \sin \theta - 4 \sin^3 \theta.

Step 2

Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve $8 \sin^3 \theta - 6 \sin \theta + 1 = 0$

99%

104 rated

Answer

Let x=sinθx = \sin \theta, we rewrite the equation as:

8x36x+1=0.8x^3 - 6x + 1 = 0.
We can use the factor theorem to check for rational roots. Testing x=12x = \frac{1}{2}:

$$8\left(\frac{1}{2}\right)^3 - 6\left(\frac{1}{2}\right) + 1 = 1 - 3 + 1 = -1 = 0.So, So,x - \frac{1}{2}$ is a factor. Dividing:

8x36x+1=(x12)(8x2+4x2)8x^3 - 6x + 1 = (x - \frac{1}{2})(8x^2 + 4x - 2)
We can solve the quadratic:

8x2+4x2=0.8x^2 + 4x - 2 = 0.
Using the quadratic formula:

x=b±b24ac2a=4±16+6416=4±816.x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-4 \pm \sqrt{16 + 64}}{16} = \frac{-4 \pm 8}{16}.
This gives x=12x = \frac{1}{2} or x=34x = -\frac{3}{4} (not in range). Thus:

sinθ=12θ=π6.\sin \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}.
The only solution in the desired range is:

θ=π6.\theta = \frac{\pi}{6}.

Step 3

Using $\sin(\theta - \alpha) = \sin \theta \cos \alpha - \cos \theta \sin \alpha$, or otherwise, show that $ \sin 15^{\circ} = \frac{1}{4}(\sqrt{6} - \sqrt{2})$

96%

101 rated

Answer

To find sin15\sin 15^{\circ}, we can express it as:

sin(4530)=sin45cos30cos45sin30.\sin(45^{\circ} - 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}.
Substituting known values:

sin45=22,cos30=32,cos45=22,sin30=12.\sin 45^{\circ} = \frac{\sqrt{2}}{2}, \cos 30^{\circ} = \frac{\sqrt{3}}{2}, \cos 45^{\circ} = \frac{\sqrt{2}}{2}, \sin 30^{\circ} = \frac{1}{2}. Thus:

sin15=22322212=6424=14(62).\sin 15^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{1}{4}(\sqrt{6} - \sqrt{2}).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;