Photo AI

8. (a) Express 2 aCOS3x – 3 aSIN3x in the form R cos(3x + a), where R and α are constants, R > 0 and 0 < α < π/2 - Edexcel - A-Level Maths Pure - Question 1 - 2011 - Paper 3

Question icon

Question 1

8.-(a)-Express-2-aCOS3x-–-3-aSIN3x-in-the-form-R-cos(3x-+--a),-where-R-and-α-are-constants,-R->-0-and-0-<-α-<-π/2-Edexcel-A-Level Maths Pure-Question 1-2011-Paper 3.png

8. (a) Express 2 aCOS3x – 3 aSIN3x in the form R cos(3x + a), where R and α are constants, R > 0 and 0 < α < π/2. Give your answers to 3 significant figures. f(x) ... show full transcript

Worked Solution & Example Answer:8. (a) Express 2 aCOS3x – 3 aSIN3x in the form R cos(3x + a), where R and α are constants, R > 0 and 0 < α < π/2 - Edexcel - A-Level Maths Pure - Question 1 - 2011 - Paper 3

Step 1

Express 2 aCOS3x – 3 aSIN3x in the form R cos(3x + α)

96%

114 rated

Answer

To express the given function in the required form, we can use the formula for combining sine and cosine:

R=sqrta2+b2R = \\sqrt{a^2 + b^2} where ( a = 2 ) and ( b = -3 ).

Calculating R:

R=22+(3)2=4+9=13approx3.61R = \sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13} \\approx 3.61

Next, we determine ( \alpha ) using:

tan(α)=ba=32\tan(\alpha) = \frac{b}{a} = \frac{-3}{2}

This gives:

α=tan1(1.5)0.983\alpha = \tan^{-1}(-1.5) \approx 0.983

Thus, we express that:

f(x)=Re2xcos(3x+α)f(x) = R e^{2x} cos(3x + \alpha)

with ( R \approx 3.61 ) and ( \alpha \approx 0.983 ).

Step 2

Show that f' (x) can be written in the form f' (x) = R e^{2x} cos(3x + α)

99%

104 rated

Answer

Differentiating ( f(x) = e^{2x} \cos(3x) ) using the product rule:

f(x)=ddx(e2x)cos(3x)+e2xddx(cos(3x))f' (x) = \frac{d}{dx}(e^{2x}) * \cos(3x) + e^{2x} * \frac{d}{dx}(\cos(3x))

Calculating the derivatives:

ddx(e2x)=2e2x\frac{d}{dx}(e^{2x}) = 2e^{2x}

and

ddx(cos(3x))=3sin(3x)\frac{d}{dx}(\cos(3x)) = -3\sin(3x)

Substituting these values in:

f(x)=2e2xcos(3x)3e2xsin(3x)f' (x) = 2e^{2x} \cos(3x) - 3e^{2x} \sin(3x)

Factoring out ( e^{2x} ):

f(x)=e2x(2cos(3x)3sin(3x))f' (x) = e^{2x}(2\cos(3x) - 3\sin(3x))

Which can be expressed in the form:

f(x)=Re2xcos(3x+α)f' (x) = R e^{2x} \cos(3x + \alpha)

This shows that f' (x) is in the desired form.

Step 3

Hence, or otherwise, find the smallest positive value of x for which the curve with equation y = f(x) has a turning point.

96%

101 rated

Answer

To find the turning point, we set ( f' (x) = 0 ):

e2x(2cos(3x)3sin(3x))=0e^{2x}(2\cos(3x) - 3\sin(3x)) = 0

Since ( e^{2x} ) is never zero, we focus on:\n 2cos(3x)3sin(3x)=02\cos(3x) - 3\sin(3x) = 0

This simplifies to:

2cos(3x)=3sin(3x)    tan(3x)=232\cos(3x) = 3\sin(3x) \implies \tan(3x) = \frac{2}{3}

Finding the smallest positive solution for ( 3x ):

3x=tan1(23)3x = \tan^{-1}(\frac{2}{3})

Calculating this gives:

x13tan1(23)0.196 (to 3 significant figures)x \approx \frac{1}{3} \tan^{-1}(\frac{2}{3}) \approx 0.196 \text{ (to 3 significant figures)}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;