Photo AI

Figure 2 shows a sketch of the curve C with parametric equations $x = 4 ext{sin}igg(t + rac{ ext{π}}{6}igg),$ $y = 3 ext{cos}(2t), ext{ } 0 ext{ } extless ext{ } t ext{ } extless ext{ } 2 ext{π}$ (a) Find an expression for $\frac{dy}{dx}$ in terms of $t$ - Edexcel - A-Level Maths Pure - Question 6 - 2012 - Paper 8

Question icon

Question 6

Figure-2-shows-a-sketch-of-the-curve-C-with-parametric-equations--$x-=-4--ext{sin}igg(t-+--rac{-ext{π}}{6}igg),$-$y-=-3--ext{cos}(2t),-ext{-}-0--ext{-}-extless--ext{-}-t--ext{-}-extless--ext{-}-2-ext{π}$--(a)-Find-an-expression-for-$\frac{dy}{dx}$-in-terms-of-$t$-Edexcel-A-Level Maths Pure-Question 6-2012-Paper 8.png

Figure 2 shows a sketch of the curve C with parametric equations $x = 4 ext{sin}igg(t + rac{ ext{π}}{6}igg),$ $y = 3 ext{cos}(2t), ext{ } 0 ext{ } extless ex... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of the curve C with parametric equations $x = 4 ext{sin}igg(t + rac{ ext{π}}{6}igg),$ $y = 3 ext{cos}(2t), ext{ } 0 ext{ } extless ext{ } t ext{ } extless ext{ } 2 ext{π}$ (a) Find an expression for $\frac{dy}{dx}$ in terms of $t$ - Edexcel - A-Level Maths Pure - Question 6 - 2012 - Paper 8

Step 1

Find an expression for $\frac{dy}{dx}$ in terms of $t$.

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we use the chain rule:

dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

First, we need to compute dydt\frac{dy}{dt} and dxdt\frac{dx}{dt}:

  1. Calculate dxdt\frac{dx}{dt}:

    Given x=4sin(t+π6)x = 4\text{sin}(t + \frac{\pi}{6}), we differentiate:

    dxdt=4cos(t+π6)\frac{dx}{dt} = 4\text{cos}(t + \frac{\pi}{6})

  2. Calculate dydt\frac{dy}{dt}:

    Given y=3cos(2t)y = 3\text{cos}(2t), we differentiate:

    dydt=6sin(2t)\frac{dy}{dt} = -6\text{sin}(2t)

  3. Combine to find dydx\frac{dy}{dx}:

    Substituting into the earlier equation gives:

    dydx=6sin(2t)4cos(t+π6)=3sin(2t)2cos(t+π6)\frac{dy}{dx} = \frac{-6\text{sin}(2t)}{4\text{cos}(t + \frac{\pi}{6})} = -\frac{3\text{sin}(2t)}{2\text{cos}(t + \frac{\pi}{6})}

Step 2

Find the coordinates of all the points on C where $\frac{dy}{dx} = 0$.

99%

104 rated

Answer

For dydx=0\frac{dy}{dx} = 0, we set the numerator of our earlier expression to zero:

6sin(2t)=0-6\text{sin}(2t) = 0

This gives:

sin(2t)=0\text{sin}(2t) = 0

The solutions for 2t=nπ2t = n\pi where nn is an integer leads to:

t=nπ2t = \frac{n\pi}{2}

Considering the interval 0<t<2π0 < t < 2\pi, we find:

  • For n=0n = 0, t=0t = 0 (out of range)
  • For n=1n = 1, t=π2t = \frac{\pi}{2}
  • For n=2n = 2, t=πt = \pi
  • For n=3n = 3, t=3π2t = \frac{3\pi}{2}
  • For n=4n = 4, t=2πt = 2\pi (out of range)

So the valid tt values are: t=π2,π,3π2t = \frac{\pi}{2}, \pi, \frac{3\pi}{2}

Next, we calculate the corresponding xx and yy coordinates:

  1. For t=π2t = \frac{\pi}{2}:

    • x=4sin(π2+π6)=4sin(2π3)=4(32)=23x = 4\text{sin}\bigg(\frac{\pi}{2} + \frac{\pi}{6}\bigg) = 4\text{sin}\bigg(\frac{2\pi}{3}\bigg) = 4(\frac{\sqrt{3}}{2}) = 2\sqrt{3}
    • y=3cos(π)=3y = 3\text{cos}(\pi) = -3
    • Coordinates: (23,3)(2\sqrt{3}, -3)
  2. For t=πt = \pi:

    • x=4sin(π+π6)=4sin(7π6)=4(12)=2x = 4\text{sin}\bigg(\pi + \frac{\pi}{6}\bigg) = 4\text{sin}\bigg(\frac{7\pi}{6}\bigg) = -4(\frac{1}{2}) = -2
    • y=3cos(2π)=3y = 3\text{cos}(2\pi) = 3
    • Coordinates: (2,3)(-2, 3)
  3. For t=3π2t = \frac{3\pi}{2}:

    • x=4sin(3π2+π6)=4sin(10π6)=4sin(5π3)=4(32)=23x = 4\text{sin}\bigg(\frac{3\pi}{2} + \frac{\pi}{6}\bigg) = 4\text{sin}\bigg(\frac{10\pi}{6}\bigg) = 4\text{sin}\bigg(\frac{5\pi}{3}\bigg) = 4(-\frac{\sqrt{3}}{2}) = -2\sqrt{3}
    • y=3cos(3π)=3y = 3\text{cos}(3\pi) = -3
    • Coordinates: (23,3)(-2\sqrt{3}, -3)

Thus, the coordinates where dydx=0\frac{dy}{dx} = 0 are:

  • (23,3)(2\sqrt{3}, -3)
  • (2,3)(-2, 3)
  • (23,3)(-2\sqrt{3}, -3)

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;