Photo AI

A curve C has parametric equations $x = ext{sin}^2 t, \quad y = 2 \text{tan} t, \quad 0 < t < \frac{\pi}{2}$ (a) Find $\frac{dy}{dx}$ in terms of $t$ - Edexcel - A-Level Maths Pure - Question 6 - 2010 - Paper 6

Question icon

Question 6

A-curve-C-has-parametric-equations--$x-=--ext{sin}^2-t,-\quad-y-=-2-\text{tan}-t,-\quad-0-<-t-<-\frac{\pi}{2}$--(a)-Find-$\frac{dy}{dx}$-in-terms-of-$t$-Edexcel-A-Level Maths Pure-Question 6-2010-Paper 6.png

A curve C has parametric equations $x = ext{sin}^2 t, \quad y = 2 \text{tan} t, \quad 0 < t < \frac{\pi}{2}$ (a) Find $\frac{dy}{dx}$ in terms of $t$. The tangen... show full transcript

Worked Solution & Example Answer:A curve C has parametric equations $x = ext{sin}^2 t, \quad y = 2 \text{tan} t, \quad 0 < t < \frac{\pi}{2}$ (a) Find $\frac{dy}{dx}$ in terms of $t$ - Edexcel - A-Level Maths Pure - Question 6 - 2010 - Paper 6

Step 1

Find $\frac{dy}{dx}$ in terms of $t$

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we need to use the chain rule:

  1. Differentiate xx and yy with respect to tt: dxdt=2sintcost\frac{dx}{dt} = 2 \sin t \cos t dydt=2sec2t\frac{dy}{dt} = 2 \sec^2 t

  2. Now, use the formula for the derivative: dydx=dy/dtdx/dt=2sec2t2sintcost=sec2tsintcost=1sintcostsec2t\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2 \sec^2 t}{2 \sin t \cos t} = \frac{\sec^2 t}{\sin t \cos t} = \frac{1}{\sin t \cos t} \sec^2 t

Thus, the final answer is: dydx=sec2tsintcost\frac{dy}{dx} = \frac{\sec^2 t}{\sin t \cos t}

Step 2

Find the x-coordinate of P

99%

104 rated

Answer

  1. At t=π3t = \frac{\pi}{3}, we calculate: x=sin2(π3)=(32)2=34x = \sin^2\left(\frac{\pi}{3}\right) = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} y=2tan(π3)=23y = 2 \tan\left(\frac{\pi}{3}\right) = 2 \cdot \sqrt{3}

  2. The slope of the tangent line is given by dydx\frac{dy}{dx} at t=π3t = \frac{\pi}{3}: dydx=sec2(π3)sin(π3)cos(π3)\frac{dy}{dx} = \frac{\sec^2\left(\frac{\pi}{3}\right)}{\sin\left(\frac{\pi}{3}\right) \cos\left(\frac{\pi}{3}\right)} Calculating each term: sec2(π3)=4,sin(π3)=32,cos(π3)=12\sec^2\left(\frac{\pi}{3}\right) = 4, \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} So, dydx=43212=163\frac{dy}{dx} = \frac{4}{\frac{\sqrt{3}}{2} \cdot \frac{1}{2}} = \frac{16}{\sqrt{3}}

  3. The equation of the tangent line at point PP is y23=163(x34)y - 2\sqrt{3} = \frac{16}{\sqrt{3}}(x - \frac{3}{4}). Set y=0y = 0 to find the x-intercept: 023=163(x34)0 - 2\sqrt{3} = \frac{16}{\sqrt{3}}(x - \frac{3}{4}) Simplifying, x34=38x - \frac{3}{4} = -\frac{\sqrt{3}}{8} Thus, x=3438=3438x = \frac{3}{4} - \frac{\sqrt{3}}{8} = \frac{3}{4} - \frac{\sqrt{3}}{8} Finding a common denominator gives: x=6838=638x = \frac{6}{8} - \frac{\sqrt{3}}{8} = \frac{6 - \sqrt{3}}{8}

Thus, the x-coordinate of point P is: xP=38x_P = \frac{3}{8}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;