Photo AI

The curve shown in Figure 2 has parametric equations $x = 2 \, ext{sin} \, t, \, y = 1 - 2 \, ext{cos} \, t, \, 0 \, ext{is} \, t \, ext{is} \, 2\pi$ (a) Show that the curve crosses the x-axis where $t = \frac{\pi}{3}$ and $t = \frac{5\pi}{3}$ - Edexcel - A-Level Maths Pure - Question 2 - 2006 - Paper 7

Question icon

Question 2

The-curve-shown-in-Figure-2-has-parametric-equations--$x-=-2-\,--ext{sin}-\,-t,-\,-y-=-1---2-\,--ext{cos}-\,-t,-\,-0-\,--ext{is}-\,-t-\,--ext{is}-\,-2\pi$--(a)-Show-that-the-curve-crosses-the-x-axis-where-$t-=-\frac{\pi}{3}$-and-$t-=-\frac{5\pi}{3}$-Edexcel-A-Level Maths Pure-Question 2-2006-Paper 7.png

The curve shown in Figure 2 has parametric equations $x = 2 \, ext{sin} \, t, \, y = 1 - 2 \, ext{cos} \, t, \, 0 \, ext{is} \, t \, ext{is} \, 2\pi$ (a) Show ... show full transcript

Worked Solution & Example Answer:The curve shown in Figure 2 has parametric equations $x = 2 \, ext{sin} \, t, \, y = 1 - 2 \, ext{cos} \, t, \, 0 \, ext{is} \, t \, ext{is} \, 2\pi$ (a) Show that the curve crosses the x-axis where $t = \frac{\pi}{3}$ and $t = \frac{5\pi}{3}$ - Edexcel - A-Level Maths Pure - Question 2 - 2006 - Paper 7

Step 1

Show that the curve crosses the x-axis where $t = \frac{\pi}{3}$ and $t = \frac{5\pi}{3}$

96%

114 rated

Answer

To determine where the curve crosses the x-axis, we need to find when y=0y = 0 from the parametric equation for yy, which is given by:

y=12cost.y = 1 - 2 \text{cos} \, t.

Setting y=0y = 0 leads to:

12cost=0.1 - 2 \text{cos} \, t = 0.

Solving this, we find:

cost=12.\text{cos} \, t = \frac{1}{2}.

The solutions to this equation within the interval 0t<2π0 \leq t < 2\pi are:

t=π3,5π3.t = \frac{\pi}{3}, \frac{5\pi}{3}.

Step 2

Show that the area R is given by the integral $$\int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2\text{cos} \, t) \, dt.$$

99%

104 rated

Answer

The area RR bounded by the curve and the x-axis can be determined using the integral of the function representing yy. The expressions for the area is given by:

Area=ydx=ab(12cost)dxdtdt\text{Area} = \int y \, dx = \int_{a}^{b} (1 - 2 \text{cos} \, t) \, \frac{dx}{dt} dt

Here, we note that:

dxdt=2cost.\frac{dx}{dt} = 2 \text{cos} \, t.

Thus, the area can indeed be setup as:

π35π3(12cost)dt.\int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2 \text{cos} \, t) dt.

Step 3

Use this integral to find the exact value of the shaded area.

96%

101 rated

Answer

To compute the area, we evaluate the integral:

π35π3(12cost)dt.\int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2 \text{cos} \, t) dt.

This integral can be separated into two parts:

  1. Evaluate dt=t\int dt = t and
  2. Evaluate 2costdt=2sint.\int -2 \text{cos} \, t \, dt = -2 \text{sin} \, t.

Thus, substituting we have:

&= \left( \frac{5\pi}{3} - 2 \text{sin} \left( \frac{5\pi}{3} \right) \right) - \left( \frac{\pi}{3} - 2 \text{sin} \left( \frac{\pi}{3} \right) \right) \ \\ &= \left( \frac{5\pi}{3} - 2(\frac{-\sqrt{3}}{2}) \right) - \left( \frac{\pi}{3} - 2(\frac{\sqrt{3}}{2}) \right) \ \\ &= \frac{5\pi}{3} + \sqrt{3} - \frac{\pi}{3} + \sqrt{3} \ \\ &= \frac{4\pi}{3} + 2\sqrt{3}. \end{align*}$$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;