Photo AI

6. (a) Prove that \[ \frac{1}{\sin 2\theta} \cdot \frac{\cos 2\theta}{\sin 2\theta} = \tan \theta, \quad \theta \neq 90^\circ, \; n \in \mathbb{Z} \] (b) Hence, or otherwise, (i) show that \( \tan 15^\circ = 2 - \sqrt{3} \) (ii) solve, for \( 0 < x < 360^\circ \), \[ \csc 4x - \cot 4x = 1 \] - Edexcel - A-Level Maths Pure - Question 8 - 2011 - Paper 3

Question icon

Question 8

6.-(a)-Prove-that--\[-\frac{1}{\sin-2\theta}-\cdot-\frac{\cos-2\theta}{\sin-2\theta}-=-\tan-\theta,-\quad-\theta-\neq-90^\circ,-\;-n-\in-\mathbb{Z}-\]--(b)-Hence,-or-otherwise,--(i)-show-that-\(-\tan-15^\circ-=-2---\sqrt{3}-\)--(ii)-solve,-for-\(-0-<-x-<-360^\circ-\),--\[-\csc-4x---\cot-4x-=-1-\]-Edexcel-A-Level Maths Pure-Question 8-2011-Paper 3.png

6. (a) Prove that \[ \frac{1}{\sin 2\theta} \cdot \frac{\cos 2\theta}{\sin 2\theta} = \tan \theta, \quad \theta \neq 90^\circ, \; n \in \mathbb{Z} \] (b) Hence, or... show full transcript

Worked Solution & Example Answer:6. (a) Prove that \[ \frac{1}{\sin 2\theta} \cdot \frac{\cos 2\theta}{\sin 2\theta} = \tan \theta, \quad \theta \neq 90^\circ, \; n \in \mathbb{Z} \] (b) Hence, or otherwise, (i) show that \( \tan 15^\circ = 2 - \sqrt{3} \) (ii) solve, for \( 0 < x < 360^\circ \), \[ \csc 4x - \cot 4x = 1 \] - Edexcel - A-Level Maths Pure - Question 8 - 2011 - Paper 3

Step 1

Prove that \( \frac{1}{\sin 2\theta} \cdot \frac{\cos 2\theta}{\sin 2\theta} = \tan \theta \)

96%

114 rated

Answer

To prove the given equation, we start with the left-hand side:

[ \frac{1}{\sin 2\theta} \cdot \frac{\cos 2\theta}{\sin 2\theta} = \frac{\cos 2\theta}{\sin^2 2\theta} ]

Using the double angle identity, we know that:

[ \sin 2\theta = 2 \sin \theta \cos \theta ]

Thus, substituting this into our equation:

[ \sin^2 2\theta = (2 \sin \theta \cos \theta)^2 = 4 \sin^2 \theta \cos^2 \theta ]

Now substituting this back into the left-hand side:

[ \frac{\cos 2\theta}{4 \sin^2 \theta \cos^2 \theta} = \frac{\cos 2\theta}{4} \cdot \frac{1}{\sin^2 \theta \cos^2 \theta} ]

Now we can simplify the right-hand side:

[ \tan \theta = \frac{\sin \theta}{\cos \theta} ]

This leads us to the required result of ( \tan \theta ).

Step 2

show that \( \tan 15^\circ = 2 - \sqrt{3} \)

99%

104 rated

Answer

To demonstrate that ( \tan 15^\circ = 2 - \sqrt{3} ), we can use the angle subtraction formula for tangent:

[ \tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} ]

Let ( A = 45^\circ ) and ( B = 30^\circ ):

[ \tan 45^\circ = 1 \quad \tan 30^\circ = \frac{1}{\sqrt{3}} ]

Substituting these values into the formula:

[ \tan 15^\circ = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}} = \frac{\frac{\sqrt{3} - 1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} ]

Rationalizing the numerator:

[ \tan 15^\circ = \frac{(\sqrt{3} - 1)(\sqrt{3} - 1)}{(\sqrt{3} + 1)(\sqrt{3} - 1)} = \frac{3 - 2\sqrt{3} + 1}{2} = 2 - \sqrt{3} ]

Step 3

solve, for \( 0 < x < 360^\circ \), \( \csc 4x - \cot 4x = 1 \)

96%

101 rated

Answer

To solve the equation ( \csc 4x - \cot 4x = 1 ), we start by writing it in sine and cosine:

[ \frac{1}{\sin 4x} - \frac{\cos 4x}{\sin 4x} = 1 ]

This simplifies to:

[ \frac{1 - \cos 4x}{\sin 4x} = 1 ]

Multiplying both sides by ( \sin 4x ):

[ 1 - \cos 4x = \sin 4x ]

Now, rearranging gives:

[ 1 = \sin 4x + \cos 4x ]

The maximum value of ( \sin 4x + \cos 4x ) occurs when both sine and cosine are equal, specifically:

[\sin 4x = \cos 4x]

Thus, setting ( 4x = 45^\circ + k \cdot 180^\circ ) for integer values of ( k ). Solving for ( x ):

[x = \frac{45 + k \cdot 180}{4}]

Finding values within ( 0 < x < 360 ):

  • For ( k = 0 ) => ( x = 11.25^\circ )
  • For ( k = 1 ) => ( x = 56.25^\circ )
  • For ( k = 2 ) => ( x = 101.25^\circ )
  • Increase until ( x < 360^\circ ) gives at least 2 valid solutions.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;