Photo AI

1. (a) Show that $$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$$ (b) Hence find, for $-180^\circ \leq \theta < 180^\circ$, all the solutions of $$\frac{2\sin 2\theta}{1 + \cos 2\theta} = 1$$ Give your answers to 1 decimal place. - Edexcel - A-Level Maths Pure - Question 3 - 2010 - Paper 5

Question icon

Question 3

1.-(a)-Show-that-$$\frac{\sin-2\theta}{1-+-\cos-2\theta}-=-\tan-\theta$$--(b)-Hence-find,-for-$-180^\circ-\leq-\theta-<-180^\circ$,-all-the-solutions-of-$$\frac{2\sin-2\theta}{1-+-\cos-2\theta}-=-1$$--Give-your-answers-to-1-decimal-place.-Edexcel-A-Level Maths Pure-Question 3-2010-Paper 5.png

1. (a) Show that $$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$$ (b) Hence find, for $-180^\circ \leq \theta < 180^\circ$, all the solutions of $$\frac{2\si... show full transcript

Worked Solution & Example Answer:1. (a) Show that $$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$$ (b) Hence find, for $-180^\circ \leq \theta < 180^\circ$, all the solutions of $$\frac{2\sin 2\theta}{1 + \cos 2\theta} = 1$$ Give your answers to 1 decimal place. - Edexcel - A-Level Maths Pure - Question 3 - 2010 - Paper 5

Step 1

Show that $$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$$

96%

114 rated

Answer

To show that sin2θ1+cos2θ=tanθ\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta, we start with the identity for sin2θ\sin 2\theta and cos2θ\cos 2\theta:

  1. Recall that sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta and cos2θ=2cos2θ1\cos 2\theta = 2 \cos^2 \theta - 1.

  2. Substitute these into the left-hand side:

    LHS=2sinθcosθ1+(2cos2θ1)=2sinθcosθ2cos2θLHS = \frac{2 \sin \theta \cos \theta}{1 + (2 \cos^2 \theta - 1)} = \frac{2 \sin \theta \cos \theta}{2 \cos^2 \theta}.

  3. Simplifying gives:

    LHS=sinθcosθ=tanθLHS = \frac{\sin \theta}{\cos \theta} = \tan \theta.

Thus, the equality holds.

Step 2

Hence find, for $-180^\circ \leq \theta < 180^\circ$, all the solutions of $$\frac{2\sin 2\theta}{1 + \cos 2\theta} = 1$$

99%

104 rated

Answer

From the previous step, substituting into the equation:

  1. Replace sin2θ\sin 2\theta and cos2θ\cos 2\theta:

    22sinθcosθ1+(2cos2θ1)=1\frac{2 \cdot 2 \sin \theta \cos \theta}{1 + (2 \cos^2 \theta - 1)} = 1.

  2. Simplifying:

    4sinθcosθ2cos2θ=1\frac{4 \sin \theta \cos \theta}{2 \cos^2 \theta} = 1.

  3. This simplifies to:

    2tanθ=1tanθ=122 \tan \theta = 1 \Rightarrow \tan \theta = \frac{1}{2}.

  4. To find solutions for 180θ<180-180^\circ \leq \theta < 180^\circ:

    θ=tan1(12)\theta = \tan^{-1}\left(\frac{1}{2}\right) gives approximately θ26.6\theta \approx 26.6^\circ.

  5. Considering the periodic nature of the tangent function, the general solutions are:

    θ=26.6+180k\theta = 26.6^\circ + 180^\circ k where k is any integer.

  6. For 180θ<180-180^\circ \leq \theta < 180^\circ:

    The other solution is θ=26.6180153.4.\theta = 26.6^\circ - 180^\circ \approx -153.4^\circ.

Thus, the solutions to one decimal place are:

  • hetaapprox26.6 heta \\approx 26.6^\circ
  • hetaapprox153.4 heta \\approx -153.4^\circ.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;