Photo AI

6. (a) Use the double angle formulae and the identity $$ \cos(A + B) = \cos A \cos B - \sin A \sin B $$ to obtain an expression for $\cos 3x$ in terms of powers of $\cos x$ only - Edexcel - A-Level Maths Pure - Question 7 - 2008 - Paper 6

Question icon

Question 7

6.-(a)-Use-the-double-angle-formulae-and-the-identity--$$-\cos(A-+-B)-=-\cos-A-\cos-B---\sin-A-\sin-B-$$--to-obtain-an-expression-for-$\cos-3x$-in-terms-of-powers-of-$\cos-x$-only-Edexcel-A-Level Maths Pure-Question 7-2008-Paper 6.png

6. (a) Use the double angle formulae and the identity $$ \cos(A + B) = \cos A \cos B - \sin A \sin B $$ to obtain an expression for $\cos 3x$ in terms of powers of... show full transcript

Worked Solution & Example Answer:6. (a) Use the double angle formulae and the identity $$ \cos(A + B) = \cos A \cos B - \sin A \sin B $$ to obtain an expression for $\cos 3x$ in terms of powers of $\cos x$ only - Edexcel - A-Level Maths Pure - Question 7 - 2008 - Paper 6

Step 1

Use the double angle formulae and the identity to obtain an expression for cos 3x

96%

114 rated

Answer

To find an expression for cos3x\cos 3x in terms of cosx\cos x only, we can use the double angle identity:

cos(A+B)=cosAcosBsinAsinB.\cos (A+B) = \cos A \cos B - \sin A \sin B.

Let us first express cos3x\cos 3x as:

cos3x=cos(2x+x)=cos2xcosxsin2xsinx.\cos 3x = \cos (2x + x) = \cos 2x \cos x - \sin 2x \sin x.

Next, we apply the double angle formulas:

  • cos2x=2cos2x1\cos 2x = 2\cos^2 x - 1
  • sin2x=2sinxcosx\sin 2x = 2\sin x \cos x

Substituting these into our expression gives:

cos3x=(2cos2x1)cosx(2sinxcosx)sinx.\cos 3x = (2\cos^2 x - 1)\cos x - (2\sin x \cos x)\sin x.

Now, notice that:

  • sin2x=1cos2x\sin^2 x = 1 - \cos^2 x

Thus, we have:

cos3x=2cos3xcosx2sin2xcosx=2cos3xcosx2(1cos2x)cosx.\cos 3x = 2\cos^3 x - \cos x - 2\sin^2 x \cos x = 2\cos^3 x - \cos x - 2(1 - \cos^2 x)\cos x.

This simplifies to:

cos3x=4cos3x3cosx.\cos 3x = 4\cos^3 x - 3\cos x.

Step 2

Prove that \frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x} = 2 \sec x

99%

104 rated

Answer

Let's simplify the left side:

cosx1+sinx+1+sinxcosx.\frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x}.

Finding a common denominator gives:

=cos2x+(1+sinx)2(1+sinx)cosx.= \frac{\cos^2 x + (1 + \sin x)^2}{(1 + \sin x)\cos x}.

Now expand the numerator:

=cos2x+1+2sinx+sin2x(1+sinx)cosx.= \frac{\cos^2 x + 1 + 2\sin x + \sin^2 x}{(1 + \sin x)\cos x}.

Using the Pythagorean identity cos2x+sin2x=1\cos^2 x + \sin^2 x = 1 gives us:

=1+1+2sinx(1+sinx)cosx=2(1+sinx)(1+sinx)cosx.= \frac{1 + 1 + 2\sin x}{(1 + \sin x)\cos x} = \frac{2(1 + \sin x)}{(1 + \sin x)\cos x}.

Now canceling 1+sinx1 + \sin x leads us to:

=2cosx=2secx,= \frac{2}{\cos x} = 2 \sec x,

which proves the statement.

Step 3

Hence find, for 0 < x < 2π, all the solutions of \frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x} = 4

96%

101 rated

Answer

From the previous result, we know that:

cosx1+sinx+1+sinxcosx=2secx.\frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x} = 2 \sec x.

Setting this equal to 4 gives:

2secx=4    secx=2.2 \sec x = 4 \implies \sec x = 2.

This implies:

cosx=12.\cos x = \frac{1}{2}.

The solutions for cosx=12\cos x = \frac{1}{2} within the interval 0<x<2π0 < x < 2\pi are:

\begin{align*} x &= \frac{\pi}{3}, \\ x &= \frac{5\pi}{3}. \end{align*}$$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;