SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home A-Level Edexcel Maths Pure Trigonometric Functions 6. (a) Use the double angle formulae and the identity
$$
\cos(A + B) = \cos A \cos B - \sin A \sin B
$$
to obtain an expression for $\cos 3x$ in terms of powers of $\cos x$ only
6. (a) Use the double angle formulae and the identity
$$
\cos(A + B) = \cos A \cos B - \sin A \sin B
$$
to obtain an expression for $\cos 3x$ in terms of powers of $\cos x$ only - Edexcel - A-Level Maths Pure - Question 7 - 2008 - Paper 6 Question 7
View full question 6. (a) Use the double angle formulae and the identity
$$
\cos(A + B) = \cos A \cos B - \sin A \sin B
$$
to obtain an expression for $\cos 3x$ in terms of powers of... show full transcript
View marking scheme Worked Solution & Example Answer:6. (a) Use the double angle formulae and the identity
$$
\cos(A + B) = \cos A \cos B - \sin A \sin B
$$
to obtain an expression for $\cos 3x$ in terms of powers of $\cos x$ only - Edexcel - A-Level Maths Pure - Question 7 - 2008 - Paper 6
Use the double angle formulae and the identity to obtain an expression for cos 3x Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find an expression for cos 3 x \cos 3x cos 3 x in terms of cos x \cos x cos x only, we can use the double angle identity:
cos ( A + B ) = cos A cos B − sin A sin B . \cos (A+B) = \cos A \cos B - \sin A \sin B. cos ( A + B ) = cos A cos B − sin A sin B .
Let us first express cos 3 x \cos 3x cos 3 x as:
cos 3 x = cos ( 2 x + x ) = cos 2 x cos x − sin 2 x sin x . \cos 3x = \cos (2x + x) = \cos 2x \cos x - \sin 2x \sin x. cos 3 x = cos ( 2 x + x ) = cos 2 x cos x − sin 2 x sin x .
Next, we apply the double angle formulas:
cos 2 x = 2 cos 2 x − 1 \cos 2x = 2\cos^2 x - 1 cos 2 x = 2 cos 2 x − 1
sin 2 x = 2 sin x cos x \sin 2x = 2\sin x \cos x sin 2 x = 2 sin x cos x
Substituting these into our expression gives:
cos 3 x = ( 2 cos 2 x − 1 ) cos x − ( 2 sin x cos x ) sin x . \cos 3x = (2\cos^2 x - 1)\cos x - (2\sin x \cos x)\sin x. cos 3 x = ( 2 cos 2 x − 1 ) cos x − ( 2 sin x cos x ) sin x .
Now, notice that:
sin 2 x = 1 − cos 2 x \sin^2 x = 1 - \cos^2 x sin 2 x = 1 − cos 2 x
Thus, we have:
cos 3 x = 2 cos 3 x − cos x − 2 sin 2 x cos x = 2 cos 3 x − cos x − 2 ( 1 − cos 2 x ) cos x . \cos 3x = 2\cos^3 x - \cos x - 2\sin^2 x \cos x = 2\cos^3 x - \cos x - 2(1 - \cos^2 x)\cos x. cos 3 x = 2 cos 3 x − cos x − 2 sin 2 x cos x = 2 cos 3 x − cos x − 2 ( 1 − cos 2 x ) cos x .
This simplifies to:
cos 3 x = 4 cos 3 x − 3 cos x . \cos 3x = 4\cos^3 x - 3\cos x. cos 3 x = 4 cos 3 x − 3 cos x .
Prove that \frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x} = 2 \sec x Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Let's simplify the left side:
cos x 1 + sin x + 1 + sin x cos x . \frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x}. 1 + sin x cos x + cos x 1 + sin x .
Finding a common denominator gives:
= cos 2 x + ( 1 + sin x ) 2 ( 1 + sin x ) cos x . = \frac{\cos^2 x + (1 + \sin x)^2}{(1 + \sin x)\cos x}. = ( 1 + sin x ) cos x cos 2 x + ( 1 + sin x ) 2 .
Now expand the numerator:
= cos 2 x + 1 + 2 sin x + sin 2 x ( 1 + sin x ) cos x . = \frac{\cos^2 x + 1 + 2\sin x + \sin^2 x}{(1 + \sin x)\cos x}. = ( 1 + sin x ) cos x cos 2 x + 1 + 2 sin x + sin 2 x .
Using the Pythagorean identity cos 2 x + sin 2 x = 1 \cos^2 x + \sin^2 x = 1 cos 2 x + sin 2 x = 1 gives us:
= 1 + 1 + 2 sin x ( 1 + sin x ) cos x = 2 ( 1 + sin x ) ( 1 + sin x ) cos x . = \frac{1 + 1 + 2\sin x}{(1 + \sin x)\cos x} = \frac{2(1 + \sin x)}{(1 + \sin x)\cos x}. = ( 1 + sin x ) cos x 1 + 1 + 2 sin x = ( 1 + sin x ) cos x 2 ( 1 + sin x ) .
Now canceling 1 + sin x 1 + \sin x 1 + sin x leads us to:
= 2 cos x = 2 sec x , = \frac{2}{\cos x} = 2 \sec x, = cos x 2 = 2 sec x ,
which proves the statement.
Hence find, for 0 < x < 2π, all the solutions of \frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x} = 4 Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
From the previous result, we know that:
cos x 1 + sin x + 1 + sin x cos x = 2 sec x . \frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x} = 2 \sec x. 1 + sin x cos x + cos x 1 + sin x = 2 sec x .
Setting this equal to 4 gives:
2 sec x = 4 ⟹ sec x = 2. 2 \sec x = 4 \implies \sec x = 2. 2 sec x = 4 ⟹ sec x = 2.
This implies:
cos x = 1 2 . \cos x = \frac{1}{2}. cos x = 2 1 .
The solutions for cos x = 1 2 \cos x = \frac{1}{2} cos x = 2 1 within the interval 0 < x < 2 π 0 < x < 2\pi 0 < x < 2 π are:
\begin{align*}
x &= \frac{\pi}{3}, \\
x &= \frac{5\pi}{3}.
\end{align*}$$ Join the A-Level students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved