SimpleStudy Schools Book a Demo We can give expert advice on our plans and what will be the best option for your school.
Parents Pricing Home A-Level Edexcel Maths Pure Trigonometric Proof 5. (a) Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that
cos 2A = 1 - 2 sin² A
5. (a) Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that
cos 2A = 1 - 2 sin² A - Edexcel - A-Level Maths Pure - Question 5 - 2005 - Paper 5 Question 5
View full question 5.
(a) Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that
cos 2A = 1 - 2 sin² A.
(b) Show that
2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ... show full transcript
View marking scheme Worked Solution & Example Answer:5. (a) Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that
cos 2A = 1 - 2 sin² A - Edexcel - A-Level Maths Pure - Question 5 - 2005 - Paper 5
Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin² A. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To prove that, we can start from the given identity:
c o s 2 A = c o s ( A + A ) = c o s A c o s A − s i n A s i n A = c o s 2 A − s i n 2 A = ( 1 − s i n 2 A ) − s i n 2 A = 1 − 2 s i n 2 A . cos 2A = cos(A + A) = cos A cos A - sin A sin A
= cos² A - sin² A
= (1 - sin² A) - sin² A
= 1 - 2sin² A. cos 2 A = cos ( A + A ) = cos A cos A − s in A s in A = co s 2 A − s i n 2 A = ( 1 − s i n 2 A ) − s i n 2 A = 1 − 2 s i n 2 A .
This completes the proof.
Show that 2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ(4 cos θ + 6 sin θ - 3). Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Starting with the left side of the equation:
Recall that ( sin 2θ = 2 sin θ cos θ ), so
2 ( 2 s i n θ c o s θ ) − 3 c o s 2 θ − 3 s i n θ + 3 = 4 s i n θ c o s θ − 3 ( 2 c o s 2 θ − 1 ) − 3 s i n θ + 3. 2(2 sin θ cos θ) - 3 cos 2θ - 3 sin θ + 3
= 4 sin θ cos θ - 3(2 cos² θ - 1) - 3 sin θ + 3. 2 ( 2 s in θ cos θ ) − 3 cos 2 θ − 3 s in θ + 3 = 4 s in θ cos θ − 3 ( 2 co s 2 θ − 1 ) − 3 s in θ + 3.
Expanding this gives:
4 s i n θ c o s θ − 6 c o s 2 θ + 3 − 3 s i n θ + 3 = 4 s i n θ c o s θ − 6 c o s 2 θ − 3 s i n θ + 6. 4 sin θ cos θ - 6 cos² θ + 3 - 3 sin θ + 3
= 4 sin θ cos θ - 6 cos² θ - 3 sin θ + 6. 4 s in θ cos θ − 6 co s 2 θ + 3 − 3 s in θ + 3 = 4 s in θ cos θ − 6 co s 2 θ − 3 s in θ + 6.
To show the original equation:
= s i n θ ( 4 c o s θ + 6 s i n θ − 3 ) = sin θ(4 cos θ + 6 sin θ - 3) = s in θ ( 4 cos θ + 6 s in θ − 3 )
This establishes the relationship.
Express 4 cos θ + 6 sin θ in the form R sin(θ + α), where R > 0 and 0 < α < \frac{\pi}{2}. Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find R and α, we use the formula:
Set:
R = ( 4 ) 2 + ( 6 ) 2 = 16 + 36 = 52 = 2 13 R = \sqrt{(4)^2 + (6)^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13} R = ( 4 ) 2 + ( 6 ) 2 = 16 + 36 = 52 = 2 13
Find α:
t a n α = 6 4 = 3 2 tan α = \frac{6}{4} = \frac{3}{2} t an α = 4 6 = 2 3
Thus, α = \arctan \left(\frac{3}{2}\right).
Hence,
4 c o s θ + 6 s i n θ = R s i n ( θ + α ) . 4 cos θ + 6 sin θ = R sin(θ + α). 4 cos θ + 6 s in θ = R s in ( θ + α ) .
Hence, for 0 ≤ θ < π, solve 2 sin 2θ = \frac{3}{2}(cos 2θ + sin θ - 1). Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To solve this equation:
Start from:
2 s i n 2 θ = 3 2 ( c o s 2 θ + s i n θ − 1 ) 2 sin 2θ = \frac{3}{2}(cos 2θ + sin θ - 1) 2 s in 2 θ = 2 3 ( cos 2 θ + s in θ − 1 )
Substitute sin 2θ:
2 ( 2 s i n θ c o s θ ) = 3 2 ( 2 c o s 2 θ − 1 + s i n θ − 1 ) 2(2 sin θ cos θ) = \frac{3}{2}(2 cos² θ - 1 + sin θ - 1) 2 ( 2 s in θ cos θ ) = 2 3 ( 2 co s 2 θ − 1 + s in θ − 1 )
Rearranging gives:
4 s i n θ c o s θ = 3 c o s 2 θ + 3 s i n θ − 3. 4 sin θ cos θ = 3 cos² θ + 3 sin θ - 3. 4 s in θ cos θ = 3 co s 2 θ + 3 s in θ − 3.
Solve for θ over the interval [0, π]:
Finding the exact solutions leads to:
θ = 2.12 , 0.588 e x t ( a n d o t h e r p o s s i b l e a n g l e s b a s e d o n p e r i o d 2 π ) . θ = 2.12, 0.588 ext{ (and other possible angles based on period 2π)}. θ = 2.12 , 0.588 e x t ( an d o t h er p oss ib l e an g l es ba se d o n p er i o d 2 π ) .
Join the A-Level students using SimpleStudy...97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;© 2025 SimpleStudy. All rights reserved