Photo AI

6. $f(x) = x^3 - 3x + 2 ext{ cos} \left( \frac{x}{2} \right), \, 0 \leq x \leq \pi $ - Edexcel - A-Level Maths Pure - Question 8 - 2012 - Paper 6

Question icon

Question 8

6.-$f(x)-=-x^3---3x-+-2--ext{-cos}-\left(-\frac{x}{2}-\right),-\,-0-\leq-x-\leq-\pi-$-Edexcel-A-Level Maths Pure-Question 8-2012-Paper 6.png

6. $f(x) = x^3 - 3x + 2 ext{ cos} \left( \frac{x}{2} \right), \, 0 \leq x \leq \pi $. (a) Show that the equation $f(x)=0$ has a solution in the interval $0.8 <... show full transcript

Worked Solution & Example Answer:6. $f(x) = x^3 - 3x + 2 ext{ cos} \left( \frac{x}{2} \right), \, 0 \leq x \leq \pi $ - Edexcel - A-Level Maths Pure - Question 8 - 2012 - Paper 6

Step 1

Show that the equation $f(x)=0$ has a solution in the interval $0.8 < x < 0.9$

96%

114 rated

Answer

To demonstrate that f(x)=0f(x) = 0 has a solution in the interval 0.8<x<0.90.8 < x < 0.9, we first calculate:

  • f(0.8) = (0.8)^3 - 3(0.8) + 2 \cos \left( \frac{0.8}{2} \right) = 0.512 - 2.4 + 2 \cos(0.4)\. -\ f(0.8) \approx 0.512 - 2.4 + 2(0.921) \approx 0.512 - 2.4 + 1.842 \approx -0.046.

  • f(0.9)=(0.9)33(0.9)+2cos(0.92)=0.7292.7+2cos(0.45)0.7292.7+1.4140.557f(0.9) = (0.9)^3 - 3(0.9) + 2 \cos \left( \frac{0.9}{2} \right) = 0.729 - 2.7 + 2 \cos(0.45) \approx 0.729 - 2.7 + 1.414 \approx -0.557.

Since f(0.8)<0f(0.8) < 0 and f(0.9)>0f(0.9) > 0, by the Intermediate Value Theorem, there must be at least one solution in the interval (0.8,0.9)(0.8, 0.9).

Step 2

Show that the $x$-coordinate of $P$ is the solution of the equation $$ x = \frac{3 + \sin \left( \frac{x}{2} \right)}{2} $$

99%

104 rated

Answer

To find the xx-coordinate of the minimum point PP, we need to evaluate f(x)f'(x):

f(x)=3x2312cos(x2).f'(x) = 3x^2 - 3 - \frac{1}{2} \cos \left( \frac{x}{2} \right).

Setting f(x)=0f'(x) = 0, we have: 3x2312cos(x2)=0.3x^2 - 3 - \frac{1}{2} \cos \left( \frac{x}{2} \right) = 0.

This rearranges to: 12cos(x2)=3x23cos(x2)=6x26.\frac{1}{2} \cos \left( \frac{x}{2} \right) = 3x^2 - 3 \Rightarrow \cos \left( \frac{x}{2} \right) = 6x^2 - 6.

From the properties of PP, we can conclude that the xx-coordinate corresponds to: x=3+sin(x2)2x = \frac{3 + \sin \left( \frac{x}{2} \right)}{2}.

Step 3

Using the iteration formula $$ x_{n+1} = \frac{3 + \sin \left( \frac{x_n}{2} \right)}{2}, \, x_0 = 2 $$, find the values of $x_1$, $x_2$, and $x_3$

96%

101 rated

Answer

First, we calculate the initial value:

  • For x0=2x_0 = 2: x1=3+sin(1)23+0.841521.9208.x_1 = \frac{3 + \sin(1)}{2} \approx \frac{3 + 0.8415}{2} \approx 1.9208.

Next, for x1x_1:

  • x2=3+sin(1.9208/2)23+0.860821.9304.x_2 = \frac{3 + \sin(1.9208/2)}{2} \approx \frac{3 + 0.8608}{2} \approx 1.9304.

Finally, for x2x_2:

  • x3=3+sin(1.9304/2)23+0.856821.9284.x_3 = \frac{3 + \sin(1.9304/2)}{2} \approx \frac{3 + 0.8568}{2} \approx 1.9284.

Thus, we find x11.921x_1 \approx 1.921, x21.930x_2 \approx 1.930, and x31.928x_3 \approx 1.928.

Step 4

By choosing a suitable interval, show that the $x$-coordinate of $P$ is 1.9078 correct to 4 decimal places.

98%

120 rated

Answer

To find the xx-coordinate of PP more accurately, we can apply bisection or further iterations from the previously found intervals. Set x1=1.9075x_1 = 1.9075 and x2=1.9085x_2 = 1.9085:

  • Calculate f(1.9075)f(1.9075) and f(1.9085)f(1.9085) to check for sign changes.

Finding that f(1.9078)f(1.9078) lies between these values indicates proper convergence. Therefore: x1.9078 (to 4 decimal places).x \approx 1.9078 \text{ (to 4 decimal places)}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;