Photo AI

6. (a) (i) By writing $3\theta = (2\theta + \phi)$, show that $$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$ (ii) Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve $$8 \sin^3 \theta - 6 \sin \theta + 1 = 0.$$ Give your answers in terms of $\pi$ - Edexcel - A-Level Maths Pure - Question 6 - 2009 - Paper 2

Question icon

Question 6

6.-(a)-(i)-By-writing-$3\theta-=-(2\theta-+-\phi)$,-show-that--$$\sin-3\theta-=-3-\sin-\theta---4-\sin^3-\theta.$$----(ii)-Hence,-or-otherwise,-for-$0-<-\theta-<-\frac{\pi}{3}$,-solve--$$8-\sin^3-\theta---6-\sin-\theta-+-1-=-0.$$----Give-your-answers-in-terms-of-$\pi$-Edexcel-A-Level Maths Pure-Question 6-2009-Paper 2.png

6. (a) (i) By writing $3\theta = (2\theta + \phi)$, show that $$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$ (ii) Hence, or otherwise, for $0 < \theta < \fr... show full transcript

Worked Solution & Example Answer:6. (a) (i) By writing $3\theta = (2\theta + \phi)$, show that $$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$ (ii) Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve $$8 \sin^3 \theta - 6 \sin \theta + 1 = 0.$$ Give your answers in terms of $\pi$ - Edexcel - A-Level Maths Pure - Question 6 - 2009 - Paper 2

Step 1

By writing $3\theta = (2\theta + \phi)$, show that $\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$

96%

114 rated

Answer

To show that sin3θ=3sinθ4sin3θ\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta, we can use the sine addition formula.

Using the formula, we have: sin3θ=sin(2θ+θ)=sin2θcosθ+cos2θsinθ.\sin 3\theta = \sin(2\theta + \theta) = \sin 2\theta \cos \theta + \cos 2\theta \sin \theta.

Substituting for sin2θ\sin 2\theta and cos2θ\cos 2\theta gives: sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta
cos2θ=12sin2θ.\cos 2\theta = 1 - 2\sin^2 \theta.

Thus, we can write: sin3θ=(2sinθcosθ)cosθ+(12sin2θ)sinθ,\sin 3\theta = (2 \sin \theta \cos \theta) \cos \theta + (1 - 2\sin^2 \theta) \sin \theta,
which expands to: sin3θ=2sinθcos2θ+sinθ2sin3θ.\sin 3\theta = 2 \sin \theta \cos^2 \theta + \sin \theta - 2 \sin^3 \theta.

Knowing that cos2θ=1sin2θ\cos^2 \theta = 1 - \sin^2 \theta, we substitute: sin3θ=2sinθ(1sin2θ)+sinθ2sin3θ=3sinθ4sin3θ.\sin 3\theta = 2 \sin \theta(1 - \sin^2 \theta) + \sin \theta - 2 \sin^3 \theta = 3 \sin \theta - 4 \sin^3 \theta.

Therefore, it is shown that sin3θ=3sinθ4sin3θ\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.

Step 2

Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve $8 \sin^3 \theta - 6 \sin \theta + 1 = 0.$

99%

104 rated

Answer

To solve the equation 8sin3θ6sinθ+1=08 \sin^3 \theta - 6 \sin \theta + 1 = 0, we start by substituting x=sinθx = \sin \theta:

8x36x+1=0.8x^3 - 6x + 1 = 0.

This is a cubic equation, which can be solved using various methods (e.g., numerical methods, factorization, or graphical). One possible root can be found using trial and error for rational solutions. Upon testing, we find:

Let x=12x = \frac{1}{2}:

8(12)36(12)+1=8(18)3+1=13+1=1,8(\frac{1}{2})^3 - 6(\frac{1}{2}) + 1 = 8(\frac{1}{8}) - 3 + 1 = 1 - 3 + 1 = -1,
which means x=12x = \frac{1}{2} is not a root. We try next x=34x = \frac{3}{4}:

8(34)36(34)+1=8(2764)6(34)+1=216649664+6464=21696+6464=18464=0,8(\frac{3}{4})^3 - 6(\frac{3}{4}) + 1 = 8(\frac{27}{64}) - 6(\frac{3}{4}) + 1 = \frac{216}{64} - \frac{96}{64} + \frac{64}{64} = \frac{216 - 96 + 64}{64} = \frac{184}{64} = 0, thus, sinθ=34\sin \theta = \frac{3}{4}.

Hence, to find θ\theta, we evaluate: θ=arcsin(34).\theta = \arcsin(\frac{3}{4}).

Step 3

Using $\sin(\theta - \alpha) = \sin \theta \cos \alpha - \cos \theta \sin \alpha$, or otherwise, show that $\sin 15^{\circ} = \frac{1}{4}(\sqrt{6} - \sqrt{2}).$

96%

101 rated

Answer

To show that sin15=14(62)\sin 15^{\circ} = \frac{1}{4}(\sqrt{6} - \sqrt{2}), we can use the angle subtraction formula. First, recognize that 15=453015^{\circ} = 45^{\circ} - 30^{\circ}.

Using the formula: sin(θα)=sinθcosαcosθsinα,\sin(\theta - \alpha) = \sin \theta \cos \alpha - \cos \theta \sin \alpha, we set θ=45\theta = 45^{\circ} and α=30\alpha = 30^{\circ}. Thus, we have:

sin15=sin45cos30cos45sin30.\sin 15^{\circ} = \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}.

Substituting the known trigonometric values: sin45=22,cos30=32,cos45=22,sin30=12,\sin 45^{\circ} = \frac{\sqrt{2}}{2}, \quad \cos 30^{\circ} = \frac{\sqrt{3}}{2}, \quad \cos 45^{\circ} = \frac{\sqrt{2}}{2}, \quad \sin 30^{\circ} = \frac{1}{2},
this gives: sin15=22322212=6424.\sin 15^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}.

Hence, sin15=14(62).\sin 15^{\circ} = \frac{1}{4}(\sqrt{6} - \sqrt{2}).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;