Photo AI

Express $3 \, ext{sin} \, x + 2 \, ext{cos} \, x$ in the form $R \, ext{sin}(x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 7 - 2007 - Paper 5

Question icon

Question 7

Express-$3-\,--ext{sin}-\,-x-+-2-\,--ext{cos}-\,-x$-in-the-form-$R-\,--ext{sin}(x-+-\alpha)$-where-$R->-0$-and-$0-<-\alpha-<-\frac{\pi}{2}$-Edexcel-A-Level Maths Pure-Question 7-2007-Paper 5.png

Express $3 \, ext{sin} \, x + 2 \, ext{cos} \, x$ in the form $R \, ext{sin}(x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. Hence find the greate... show full transcript

Worked Solution & Example Answer:Express $3 \, ext{sin} \, x + 2 \, ext{cos} \, x$ in the form $R \, ext{sin}(x + \alpha)$ where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ - Edexcel - A-Level Maths Pure - Question 7 - 2007 - Paper 5

Step 1

Express $3 \, ext{sin} \, x + 2 \, ext{cos} \, x$ in the form $R \, ext{sin}(x + \alpha)$

96%

114 rated

Answer

To express 3extsinx+2extcosx3 \, ext{sin} \, x + 2 \, ext{cos} \, x in the form Rextsin(x+α)R \, ext{sin}(x + \alpha), we first identify RR and α\alpha using the relationships:

  1. Calculate RR:
    R=32+22=9+4=13.R = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}.

  2. Determine α\alpha:
    sin(α)=2R=213,cos(α)=3R=313.\text{sin}(\alpha) = \frac{2}{R} = \frac{2}{\sqrt{13}}, \quad \text{cos}(\alpha) = \frac{3}{R} = \frac{3}{\sqrt{13}}.
    By calculating tan(α)=sin(α)cos(α)=2/133/13=23\tan(\alpha) = \frac{\text{sin}(\alpha)}{\text{cos}(\alpha)} = \frac{2/\sqrt{13}}{3/\sqrt{13}} = \frac{2}{3}, we find
    α=tan1(23)0.588.\alpha = \tan^{-1}(\frac{2}{3}) \approx 0.588.

Thus, we can express it as: 3sinx+2cosx=13sin(x+0.588).3 \, \text{sin} \, x + 2 \, \text{cos} \, x = \sqrt{13} \, \text{sin}(x + 0.588).

Step 2

Hence find the greatest value of $(3 \, ext{sin} \, x + 2 \, ext{cos} \, x)^4$

99%

104 rated

Answer

The greatest value of 3sinx+2cosx3 \, \text{sin} \, x + 2 \, \text{cos} \, x occurs when sin(x+0.588)=1\sin(x + 0.588) = 1.
This gives: 3sinx+2cosx=13.3 \, \text{sin} \, x + 2 \, \text{cos} \, x = \sqrt{13}.
The greatest value of (3sinx+2cosx)4(3 \, \text{sin} \, x + 2 \, \text{cos} \, x)^4 is then: (13)4=169.\left(\sqrt{13}\right)^4 = 169.

Step 3

Solve, for $0 < x < 2\pi$, the equation $3 \, \text{sin} \, x + 2 \, \text{cos} \, x = 1$

96%

101 rated

Answer

To solve the equation 3sinx+2cosx=13 \, \text{sin} \, x + 2 \, \text{cos} \, x = 1, we first rewrite it using the expression found in part (a):
13sin(x+0.588)=1.\sqrt{13} \, \text{sin}(x + 0.588) = 1.
Then, we can determine: sin(x+0.588)=113.\text{sin}(x + 0.588) = \frac{1}{\sqrt{13}}.
Using a calculator, we find: x+0.588=arcsin(113).x + 0.588 = \arcsin(\frac{1}{\sqrt{13}}).
Calculating gives: x+0.5880.281orπ0.2812.860.x + 0.588 \approx 0.281 \quad \text{or} \quad \pi - 0.281 \approx 2.860.
Thus:

  • For x+0.588=0.281x + 0.588 = 0.281:
    x0.2810.5880.307x \approx 0.281 - 0.588 \approx -0.307 (not valid in the range)
  • For x+0.588=2.860x + 0.588 = 2.860:
    x2.8600.5882.272.x \approx 2.860 - 0.588 \approx 2.272.
    Also considering periodic solutions: x+0.5882.860+2πx2.272+2π5.855.x + 0.588 \approx 2.860 + 2\pi \Rightarrow x \approx 2.272 + 2\pi \approx 5.855.
    Consolidating our answers, we have: x2.272,5.855x \approx 2.272, 5.855 (to 3 decimal places).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;