Photo AI

Figure 2 shows a sketch of the curve C with parametric equations $x = ( ad{3}) ext{sin } 2t, \quad y = 4 ext{cos } t, \quad 0 \leq t \leq \pi$ (a) Show that \(\frac{dy}{dx} = k(\sqrt{3})\text{tan } 2t\), where $k$ is a constant to be determined - Edexcel - A-Level Maths Pure - Question 8 - 2012 - Paper 7

Question icon

Question 8

Figure-2-shows-a-sketch-of-the-curve-C-with-parametric-equations--$x-=-(-ad{3})-ext{sin-}-2t,-\quad-y-=-4--ext{cos-}-t,-\quad-0-\leq-t-\leq-\pi$--(a)-Show-that-\(\frac{dy}{dx}-=-k(\sqrt{3})\text{tan-}-2t\),-where-$k$-is-a-constant-to-be-determined-Edexcel-A-Level Maths Pure-Question 8-2012-Paper 7.png

Figure 2 shows a sketch of the curve C with parametric equations $x = ( ad{3}) ext{sin } 2t, \quad y = 4 ext{cos } t, \quad 0 \leq t \leq \pi$ (a) Show that \(\fr... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of the curve C with parametric equations $x = ( ad{3}) ext{sin } 2t, \quad y = 4 ext{cos } t, \quad 0 \leq t \leq \pi$ (a) Show that \(\frac{dy}{dx} = k(\sqrt{3})\text{tan } 2t\), where $k$ is a constant to be determined - Edexcel - A-Level Maths Pure - Question 8 - 2012 - Paper 7

Step 1

Show that \(\frac{dy}{dx} = k(\sqrt{3})\text{tan } 2t\)

96%

114 rated

Answer

To find (\frac{dy}{dx}), we use the chain rule. First, we calculate (\frac{dx}{dt}) and (\frac{dy}{dt}):

  1. Compute (\frac{dx}{dt}):
    [ \frac{dx}{dt} = \frac{d}{dt}((\sqrt{3})\text{sin } 2t) = 2\sqrt{3}\text{cos } 2t ]

  2. Compute (\frac{dy}{dt}):
    [ \frac{dy}{dt} = \frac{d}{dt}(4\text{cos } t) = -4\text{sin } t ]

Now calculate (\frac{dy}{dx}):
[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-4\text{sin } t}{2\sqrt{3}\text{cos } 2t} = \frac{-2}{\sqrt{3}} \frac{\text{sin } t}{\text{cos } 2t} ]

Using the double angle identity:
[ \frac{\text{sin } t}{\text{cos } 2t} = \text{tan } 2t ]

Thus:
[ \frac{dy}{dx} = k(\sqrt{3})\text{tan } 2t ] where (k = \frac{-2}{3}) or equivalent constant.

Step 2

Find an equation of the tangent to C at the point where $t = \frac{\pi}{3}$

99%

104 rated

Answer

  1. Substitute t=π3t = \frac{\pi}{3} into the parametric equations: [ x = (\sqrt{3})\text{sin}(2 \times \frac{\pi}{3}) = (\sqrt{3})\text{sin}(\frac{2\pi}{3}) = (\sqrt{3})\cdot\frac{\sqrt{3}}{2} = \frac{3}{2} ] [ y = 4\text{cos}(\frac{\pi}{3}) = 4 \cdot \frac{1}{2} = 2 ]

  2. Find (\frac{dy}{dx}) at this point: [ \frac{dy}{dx} \text{ at } t = \frac{\pi}{3} = k(\sqrt{3})\text{tan}(2 \cdot \frac{\pi}{3}) = k(\sqrt{3})(-\sqrt{3}) = -3 ]

  3. The slope of the tangent line is -3. Thus, using point-slope form:
    [ y - 2 = -3\left(x - \frac{3}{2}\right) ]

  4. Rearranging gives:
    [ y = -3x + \frac{9}{2} + 2 \Rightarrow y = -3x + \frac{13}{2} ]
    Therefore, (a = -3) and (b = \frac{13}{2}).

Step 3

Find a cartesian equation of C

96%

101 rated

Answer

  1. Start with the parametric equations: [ x = (\sqrt{3})\text{sin } 2t, \quad y = 4\text{cos } t ]

  2. Solve for (\text{sin } 2t) in terms of (y): [ \text{cos } t = \frac{y}{4} \Rightarrow \text{sin } t = \sqrt{1 - \left(\frac{y}{4}\right)^2} ]

  3. Using the double angle formula for sine: [ \text{sin } 2t = 2\text{sin } t \text{cos } t \Rightarrow \text{sin } 2t = 2\sqrt{1 - \left(\frac{y}{4}\right)^2}\cdot\frac{y}{4} ]

  4. Substitute into the equation: [ x = \sqrt{3} \cdot 2\cdot\frac{y}{4}\cdot\sqrt{1 - \left(\frac{y}{4}\right)^2} \Rightarrow x = \frac{\sqrt{3}}{2} y \sqrt{1 - \left(\frac{y}{4}\right)^2} ]

  5. Square both sides to eliminate the square root and rearrange to find the relation between (x) and (y).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;