Photo AI
Question 8
6. (i) Find \[ \int xe^{x} \: dx \] (ii) Find \[ \int \frac{8}{(2x-1)^{3}} \: dx, \, x > \frac{1}{2} \] (iii) Given that \( y = \frac{\pi}{6} \) at \( x = 0 \), so... show full transcript
Step 1
Answer
To find ( \int xe^{x} : dx ), we will use integration by parts. Let
[ \int u , dv = uv - \int v , du ]
Substituting gives: [ \int xe^{x} : dx = xe^{x} - \int e^{x} : dx = xe^{x} - e^{x} + C = e^{x}(x - 1) + C ]
Step 2
Answer
To solve this integral, we use the substitution method. Let
When ( x = \frac{1}{2} ), ( u = 0 ). The integral becomes: [ \int \frac{8}{u^{3}} \cdot \frac{1}{2} du = 4 \int u^{-3} du ]
Now integrating gives: [ 4 \cdot \left(-\frac{1}{2u^{2}}\right) + C = -\frac{2}{(2x-1)^{2}} + C ]
Step 3
Answer
We start with the differential equation: [ \frac{dy}{dx} = e^{x} : \csc(2y) : \csc(y) ]
Separate the variables: [ \int \csc(2y) , \csc(y) , dy = \int e^{x} , dx ]
Integrating both sides, let: [ \int \csc(2y) , \csc(y) , dy \text{ (this can be derived with appropriate substitutions) } ]\
The right side integrates to ( e^{x} + C ).
Now applying the initial condition ( y(0) = \frac{\pi}{6} ) can help find the constant. After finding ( C ), the solution will be complete.
Report Improved Results
Recommend to friends
Students Supported
Questions answered