Photo AI

The curve C has the equation $$ ext{cos }2x + ext{cos }3y = 1, $$ where $$ - rac{ ext{pi}}{4} leq x leq rac{ ext{pi}}{4}, 0 leq y leq rac{ ext{pi}}{6} - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 7

Question icon

Question 4

The-curve-C-has-the-equation--$$--ext{cos-}2x-+--ext{cos-}3y-=-1,-$$-where--$$---rac{-ext{pi}}{4}--leq-x--leq--rac{-ext{pi}}{4},--0--leq-y--leq--rac{-ext{pi}}{6}-Edexcel-A-Level Maths Pure-Question 4-2010-Paper 7.png

The curve C has the equation $$ ext{cos }2x + ext{cos }3y = 1, $$ where $$ - rac{ ext{pi}}{4} leq x leq rac{ ext{pi}}{4}, 0 leq y leq rac{ ext{pi}}{6}. $$... show full transcript

Worked Solution & Example Answer:The curve C has the equation $$ ext{cos }2x + ext{cos }3y = 1, $$ where $$ - rac{ ext{pi}}{4} leq x leq rac{ ext{pi}}{4}, 0 leq y leq rac{ ext{pi}}{6} - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 7

Step 1

Find $\frac{dy}{dx}$ in terms of x and y.

96%

114 rated

Answer

To find dydx,\frac{dy}{dx}, we start by differentiating the equation with respect to x:

ddx(cos 2x)+ddx(cos 3y)=ddx(1)\frac{d}{dx}(\text{cos }2x) + \frac{d}{dx}(\text{cos }3y) = \frac{d}{dx}(1)

Using the chain rule, we have:

2sin(2x)+3sin(3y)dydx=0-2\sin(2x) + 3\sin(3y)\frac{dy}{dx} = 0

Rearranging gives:

dydx=2sin(2x)3sin(3y).\frac{dy}{dx} = \frac{2\sin(2x)}{3\sin(3y)}.

Step 2

Find the value of y at P.

99%

104 rated

Answer

At the point P where x=pi6,x = \frac{\text{pi}}{6}, we substitute:

cos (2×pi6)+cos 3y=1.\text{cos }\left(2 \times \frac{\text{pi}}{6}\right) + \text{cos }3y = 1.

Calculating:

cos(pi3)+cos 3y=112+cos 3y=1.\text{cos}\left(\frac{\text{pi}}{3}\right) + \text{cos }3y = 1\Rightarrow \frac{1}{2} + \text{cos }3y = 1.

This simplifies to:

cos 3y=12.\text{cos }3y = \frac{1}{2}.

Solving for 3y yields:

3y=pi3+2nπ,3y = \frac{\text{pi}}{3} + 2n\pi,

where n is an integer. Since 0\tleqy\tleqpi6,0 \tleq y \tleq \frac{\text{pi}}{6}, we take:

y = \frac{\text{pi}}{9}.$

Step 3

Find the equation of the tangent to C at P.

96%

101 rated

Answer

At x=pi6x = \frac{\text{pi}}{6}, we have previously found:

dydx=2sin(2×pi6)3sin(3×pi9)=2sin(pi3)3sin(pi3)=23.\frac{dy}{dx} = \frac{2\sin(2\times \frac{\text{pi}}{6})}{3\sin(3\times \frac{\text{pi}}{9})} = \frac{2\sin(\frac{\text{pi}}{3})}{3\sin(\frac{\text{pi}}{3})} = \frac{2}{3}.

The point P at (pi6,pi9)\left(\frac{\text{pi}}{6}, \frac{\text{pi}}{9}\right) allows us to use point-slope form:

ypi9=23(xpi6).\text{y} - \frac{\text{pi}}{9} = \frac{2}{3}\left(x - \frac{\text{pi}}{6}\right).

Rearranging gives:

2x3y+pi9pi9=02x3ypi9=0.2x - 3y + \frac{\text{pi}}{9} - \frac{\text{pi}}{9} = 0\Rightarrow 2x - 3y - \frac{\text{pi}}{9} = 0.

Multiplying through by 9 for integer coefficients yields:

18x - 27y - \text{pi} = 0,$$ where coefficients a, b, and c are 18, -27, and -1 respectively.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;