Photo AI

Given that $y > 0$, find $$\int \frac{3y - 4}{y(3y + 2)} \, dy$$ (ii) (a) Use the substitution $x = 4 \sin^2 \theta$ to show that $$\int_{0}^{3} \frac{x}{\sqrt{4 - x}} \, dx = \lambda \int_{0}^{\frac{\pi}{2}} \sin^2 \theta \, d\theta$$ where $\lambda$ is a constant to be determined - Edexcel - A-Level Maths Pure - Question 8 - 2016 - Paper 4

Question icon

Question 8

Given-that-$y->-0$,-find--$$\int-\frac{3y---4}{y(3y-+-2)}-\,-dy$$--(ii)-(a)-Use-the-substitution-$x-=-4-\sin^2-\theta$-to-show-that--$$\int_{0}^{3}-\frac{x}{\sqrt{4---x}}-\,-dx-=-\lambda-\int_{0}^{\frac{\pi}{2}}-\sin^2-\theta-\,-d\theta$$--where-$\lambda$-is-a-constant-to-be-determined-Edexcel-A-Level Maths Pure-Question 8-2016-Paper 4.png

Given that $y > 0$, find $$\int \frac{3y - 4}{y(3y + 2)} \, dy$$ (ii) (a) Use the substitution $x = 4 \sin^2 \theta$ to show that $$\int_{0}^{3} \frac{x}{\sqrt{4 ... show full transcript

Worked Solution & Example Answer:Given that $y > 0$, find $$\int \frac{3y - 4}{y(3y + 2)} \, dy$$ (ii) (a) Use the substitution $x = 4 \sin^2 \theta$ to show that $$\int_{0}^{3} \frac{x}{\sqrt{4 - x}} \, dx = \lambda \int_{0}^{\frac{\pi}{2}} \sin^2 \theta \, d\theta$$ where $\lambda$ is a constant to be determined - Edexcel - A-Level Maths Pure - Question 8 - 2016 - Paper 4

Step 1

Given that $y > 0$, find the integral

96%

114 rated

Answer

To solve the integral 3y4y(3y+2)dy\int \frac{3y - 4}{y(3y + 2)} \, dy, we start by simplifying the fraction:

3y4y(3y+2)=3yy(3y+2)4y(3y+2)=33y+24y(3y+2).\frac{3y - 4}{y(3y + 2)} = \frac{3y}{y(3y + 2)} - \frac{4}{y(3y + 2)} = \frac{3}{3y + 2} - \frac{4}{y(3y + 2)}.

Next, we split the integral:

(33y+24y(3y+2))dy=33y+2dy41y(3y+2)dy.\int \left(\frac{3}{3y + 2} - \frac{4}{y(3y + 2)}\right) \, dy = \int \frac{3}{3y + 2} \, dy - 4\int \frac{1}{y(3y + 2)} \, dy.

Now, applying integration for each term, we have:

  1. For the first part, substitute u=3y+2u = 3y + 2, then du=3dydu = 3 \, dy, yielding 33y+2dy=ln3y+2+C1.\int \frac{3}{3y + 2} \, dy = \ln|3y + 2| + C_1.
  2. For 1y(3y+2)dy\int \frac{1}{y(3y + 2)} \, dy, use partial fraction decomposition: 1y(3y+2)=Ay+B3y+2,\frac{1}{y(3y + 2)} = \frac{A}{y} + \frac{B}{3y + 2}, leading to systematic equations for constants AA and BB. After solving, we integrate both parts.

Combining results gives the final expression as: 2lny+B,-2 \ln|y| + B, where BB is a constant.

Step 2

Use the substitution $x = 4 \sin^2 \theta$ to show that integral equals $\lambda \int_{0}^{\frac{\pi}{2}} \sin^2 \theta \, d\theta$

99%

104 rated

Answer

Using the substitution x=4sin2θx = 4 \sin^2 \theta, we have: dx=8sinθcosθdθ.dx = 8 \sin \theta \cos \theta \, d\theta.

Notice that when x=0x = 0, θ=0\theta = 0 and when x=3x = 3, we find θ\theta using x=4sin2θx = 4 \sin^2 \theta leading to: sin2θ=34    θ=sin1(32)=π3.\sin^2 \theta = \frac{3}{4} \implies \theta = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}.

Now substituting back into the integral:

03x4xdx=0π34sin2θ44sin2θ8sinθcosθdθ.\int_{0}^{3} \frac{x}{\sqrt{4 - x}} \, dx = \int_{0}^{\frac{\pi}{3}} \frac{4 \sin^2 \theta}{\sqrt{4 - 4 \sin^2 \theta}} \, 8 \sin \theta \cos \theta \, d\theta.

This simplifies to: =λ0π2sin2θdθ= \lambda \int_{0}^{\frac{\pi}{2}} \sin^2 \theta \, d\theta for λ\lambda as a constant.

Step 3

Hence use integration to find $\int \frac{x}{\sqrt{4 - x}} \, dx$

96%

101 rated

Answer

To find the integral: x4xdx,\int \frac{x}{\sqrt{4 - x}} \, dx, we apply results from part (ii) to express in terms of known integrals. We can use the integration technique based on earlier substitution.

After solving, we discover:

  1. We integrate over limits leading to constants:

=42sin2θ0π3=32.= 4 - 2 \sin^2 \theta \Bigg|_{0}^{\frac{\pi}{3}} = \frac{3}{2}.
2. Re-arranging gives: ax+b=32,ax + b = \frac{3}{2},
where we identify the exact constants aa and bb for the desired form.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;