Photo AI

3. (a) Find \( \int x \cos 2x \, dx \) - Edexcel - A-Level Maths Pure - Question 5 - 2007 - Paper 8

Question icon

Question 5

3.-(a)-Find-\(-\int-x-\cos-2x-\,-dx-\)-Edexcel-A-Level Maths Pure-Question 5-2007-Paper 8.png

3. (a) Find \( \int x \cos 2x \, dx \). (b) Hence, using the identity \( \cos 2x = 2\cos^2 x - 1 \), deduce \( \int x \cos^3 x \, dx \).

Worked Solution & Example Answer:3. (a) Find \( \int x \cos 2x \, dx \) - Edexcel - A-Level Maths Pure - Question 5 - 2007 - Paper 8

Step 1

Find \( \int x \cos 2x \, dx \)

96%

114 rated

Answer

To find ( \int x \cos 2x , dx ), we will use integration by parts. Let:

  • ( u = x )
  • ( dv = \cos 2x , dx )

Then, we differentiate and integrate:

  • ( du = dx )
  • ( v = \frac{1}{2} \sin 2x )

Using integration by parts formula ( \int u , dv = uv - \int v , du ):

[\int x \cos 2x , dx = x \left( \frac{1}{2} \sin 2x \right) - \int \frac{1}{2} \sin 2x , dx]

Now, we compute ( \int \sin 2x , dx ):

[\int \sin 2x , dx = -\frac{1}{2} \cos 2x ]

Putting it all together:

[\int x \cos 2x , dx = \frac{x}{2} \sin 2x + \frac{1}{4} \cos 2x + C]

Step 2

Hence, using the identity \( \cos 2x = 2\cos^2 x - 1 \), deduce \( \int x \cos^3 x \, dx \)

99%

104 rated

Answer

To deduce ( \int x \cos^3 x , dx ), we begin by expressing ( \cos^3 x ):

[\cos^3 x = \cos x (\cos^2 x) = \cos x \left( \frac{1}{2}(1 + \cos 2x) \right) = \frac{1}{2} \cos x + \frac{1}{2} \cos x \cos 2x]

Thus:

[\int x \cos^3 x , dx = \frac{1}{2} \int x \cos x , dx + \frac{1}{2} \int x \cos x \cos 2x , dx]

We already have the result for ( \int x \cos 2x , dx ) from part (a). Now, we substitute this into the integral:

[= \frac{1}{2} \left( \text{result from part (a)} \right) + \frac{1}{4} \sin 2x + C]

Final expression yields:

[= \frac{1}{2} \cdot \left( \frac{x}{2} \sin 2x + \frac{1}{4} \cos 2x + C \right) + \frac{1}{4} \sin 2x + C]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;