Photo AI

3. (a) Find \( \int x \cos{2x} \, dx \) - Edexcel - A-Level Maths Pure - Question 5 - 2007 - Paper 7

Question icon

Question 5

3.-(a)-Find-\(-\int-x-\cos{2x}-\,-dx-\)-Edexcel-A-Level Maths Pure-Question 5-2007-Paper 7.png

3. (a) Find \( \int x \cos{2x} \, dx \). (b) Hence, using the identity \( \cos{2x} = 2\cos^{2}x - 1 \), deduce \( \int x \cos^{2}x \, dx \).

Worked Solution & Example Answer:3. (a) Find \( \int x \cos{2x} \, dx \) - Edexcel - A-Level Maths Pure - Question 5 - 2007 - Paper 7

Step 1

Find \( \int x \cos{2x} \, dx \)

96%

114 rated

Answer

To solve ( \int x \cos{2x} , dx ), we use integration by parts. Let:

[ u = x , \Rightarrow , du = dx \ [ dv = \cos{2x} , dx \rightarrow v = \frac{1}{2}\sin{2x} ]

Using the integration by parts formula:

[ \int u , dv = uv - \int v , du ]

we get:

[ \int x \cos{2x} , dx = x \cdot \frac{1}{2}\sin{2x} - \int \frac{1}{2}\sin{2x} , dx ]

Now, we calculate ( \int \frac{1}{2}\sin{2x} , dx ):

[ \int \frac{1}{2}\sin{2x} , dx = -\frac{1}{4}\cos{2x} + C ]

Thus, combining the results:

[ \int x \cos{2x} , dx = \frac{x}{2}\sin{2x} + \frac{1}{4}\cos{2x} + C ]

Step 2

Hence, using the identity \( \cos{2x} = 2\cos^{2}x - 1 \), deduce \( \int x \cos^{2}x \, dx \)

99%

104 rated

Answer

To deduce ( \int x \cos^{2}x , dx ) using the identity ( \cos{2x} = 2\cos^{2}x - 1 ), we rewrite the integral:

[ \int x \cos^{2}x , dx = \int x \left( \frac{1}{2}(\cos{2x} + 1) \right) , dx = \frac{1}{2}\int x \cos{2x} , dx + \frac{1}{2}\int x , dx ]

From part (a), we already found ( \int x \cos{2x} , dx = \frac{x}{2}\sin{2x} + \frac{1}{4}\cos{2x} + C ).

Also, the integral ( \int x , dx = \frac{x^{2}}{2} + C ).

Combining both results:

[ \int x \cos^{2}x , dx = \frac{1}{2}\left( \frac{x}{2}\sin{2x} + \frac{1}{4}\cos{2x} + C \right) + \frac{1}{2}\left( \frac{x^{2}}{2} + C \right) ]

This simplifies to:

[ = \frac{x}{4}\sin{2x} + \frac{1}{8}\cos{2x} + \frac{x^{2}}{4} + C ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;