Photo AI

The curve C has parametric equations $x = ext{ln} \, t, \quad y = t^2 - 2, \quad t > 0$ Find (a) an equation of the normal to C at the point where $t = 3$ - Edexcel - A-Level Maths Pure - Question 4 - 2011 - Paper 6

Question icon

Question 4

The-curve-C-has-parametric-equations--$x-=--ext{ln}-\,-t,-\quad-y-=-t^2---2,-\quad-t->-0$--Find--(a)-an-equation-of-the-normal-to-C-at-the-point-where-$t-=-3$-Edexcel-A-Level Maths Pure-Question 4-2011-Paper 6.png

The curve C has parametric equations $x = ext{ln} \, t, \quad y = t^2 - 2, \quad t > 0$ Find (a) an equation of the normal to C at the point where $t = 3$. (b) ... show full transcript

Worked Solution & Example Answer:The curve C has parametric equations $x = ext{ln} \, t, \quad y = t^2 - 2, \quad t > 0$ Find (a) an equation of the normal to C at the point where $t = 3$ - Edexcel - A-Level Maths Pure - Question 4 - 2011 - Paper 6

Step 1

Find the equation of the normal to C at the point where $t = 3$.

96%

114 rated

Answer

First, we need to find the parametric coordinates at t=3t = 3:

  • For xx:
    x=extln3x = ext{ln} \, 3
  • For yy:
    y=322=7y = 3^2 - 2 = 7

Thus, the point on the curve is (extln3,7)\left( ext{ln} \, 3, 7 \right).

Next, we need to find the derivatives:

  • The derivative rac{dx}{dt} is: dxdt=1t\frac{dx}{dt} = \frac{1}{t}
  • The derivative rac{dy}{dt} is: dydt=2t\frac{dy}{dt} = 2t

Now calculating at t=3t = 3:

  • rac{dx}{dt} = \frac{1}{3}
  • rac{dy}{dt} = 6

Thus, the slope mm of the tangent line at this point is:

m=dydx=dydtdxdt=613=18m = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{6}{\frac{1}{3}} = 18

The slope of the normal line is the negative reciprocal:

mnormal=118m_{normal} = -\frac{1}{18}

Using the point-slope form of the line equation:

y7=118(xln3)y - 7 = -\frac{1}{18}(x - \text{ln} \, 3)

This represents the equation of the normal.

Step 2

Find a cartesian equation of C.

99%

104 rated

Answer

To find the Cartesian equation, we need to eliminate the parameter tt:

From the first parametric equation: t=ext = e^x

Substituting t=ext = e^x into the second parametric equation:

y=(ex)22=e2x2y = (e^x)^2 - 2 = e^{2x} - 2

Thus, the Cartesian equation of the curve C is:

y=e2x2y = e^{2x} - 2

Step 3

Use calculus to find the exact volume of the solid generated.

96%

101 rated

Answer

To find the volume of the solid generated by revolving the area RR around the x-axis, we will use the disk method:

The volume is given by:

V=πab[f(x)]2dxV = \pi \int_{a}^{b} [f(x)]^2 \, dx

Where f(x)=(ex)22f(x) = (e^x)^2 - 2. The bounds are from x=ln2x = \text{ln} \, 2 to x=ln4x = \text{ln} \, 4. Thus, we have:

V=πln2ln4(e2x2)2dxV = \pi \int_{\text{ln} \, 2}^{\text{ln} \, 4} (e^{2x} - 2)^2 \, dx

Expanding the integrand:

=πln2ln4(e4x4e2x+4)dx= \pi \int_{\text{ln} \, 2}^{\text{ln} \, 4} (e^{4x} - 4e^{2x} + 4) \, dx

Evaluating this integral gives:

=π[e4x42e2x+4x]ln2ln4= \pi \left[ \frac{e^{4x}}{4} - 2e^{2x} + 4x \right]_{\text{ln} \, 2}^{\text{ln} \, 4}

Calculating the limits:

  • At x=ln4x = \text{ln} \, 4: e4ln442e2ln4+4ln4=6448+4ln4=168+4ln4\frac{e^{4 \text{ln} \, 4}}{4} - 2e^{2 \text{ln} \, 4} + 4 \text{ln} \, 4 = \frac{64}{4} - 8 + 4 \text{ln} \, 4 = 16 - 8 + 4 \text{ln} \, 4
  • At x=ln2x = \text{ln} \, 2: e4ln242e2ln2+4ln2=1644+4ln2=44+4ln2\frac{e^{4 \text{ln} \, 2}}{4} - 2e^{2 \text{ln} \, 2} + 4 \text{ln} \, 2 = \frac{16}{4} - 4 + 4 \text{ln} \, 2 = 4 - 4 + 4 \text{ln} \, 2

Combining these results:

The volume is: V=π[(168+4ln4)(44+4ln2)]=π(12+4ln44ln2)V = \pi \left[ (16 - 8 + 4 \text{ln} \, 4) - (4 - 4 + 4 \text{ln} \, 2) \right] = \pi (12 + 4 \text{ln} \, 4 - 4 \text{ln} \, 2)

Simplifying gives the final volume expression.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;