Photo AI

Figure 3 shows a sketch of the curve C with parametric equations $x = 4 \, ext{cos} \left( t + \frac{\pi}{6} \right)$, $y = 2 \, \text{sin} \, t$, $0 < t < 2\pi$ (a) Show that $x + y = 2 \sqrt{3} \, \text{cos} \, t$ (b) Show that a cartesian equation of C is $(x + y)^2 + a y^2 = b$ where a and b are integers to be determined. - Edexcel - A-Level Maths Pure - Question 8 - 2014 - Paper 7

Question icon

Question 8

Figure-3-shows-a-sketch-of-the-curve-C-with-parametric-equations--$x-=-4-\,--ext{cos}-\left(-t-+-\frac{\pi}{6}-\right)$,--$y-=-2-\,-\text{sin}-\,-t$,--$0-<-t-<-2\pi$--(a)-Show-that--$x-+-y-=-2-\sqrt{3}-\,-\text{cos}-\,-t$--(b)-Show-that-a-cartesian-equation-of-C-is--$(x-+-y)^2-+-a-y^2-=-b$--where-a-and-b-are-integers-to-be-determined.-Edexcel-A-Level Maths Pure-Question 8-2014-Paper 7.png

Figure 3 shows a sketch of the curve C with parametric equations $x = 4 \, ext{cos} \left( t + \frac{\pi}{6} \right)$, $y = 2 \, \text{sin} \, t$, $0 < t < 2\pi$... show full transcript

Worked Solution & Example Answer:Figure 3 shows a sketch of the curve C with parametric equations $x = 4 \, ext{cos} \left( t + \frac{\pi}{6} \right)$, $y = 2 \, \text{sin} \, t$, $0 < t < 2\pi$ (a) Show that $x + y = 2 \sqrt{3} \, \text{cos} \, t$ (b) Show that a cartesian equation of C is $(x + y)^2 + a y^2 = b$ where a and b are integers to be determined. - Edexcel - A-Level Maths Pure - Question 8 - 2014 - Paper 7

Step 1

Show that $x + y = 2 \sqrt{3} \, \text{cos} \, t$

96%

114 rated

Answer

To begin, we will express both xx and yy in terms of tt:

  • From the equation for xx:
    x=4cos(t+π6)x = 4 \text{cos} \left( t + \frac{\pi}{6} \right)

  • From the equation for yy:
    y=2sinty = 2 \text{sin} \, t

Using the angle addition formula: cos(t+π6)=costcos(π6)sintsin(π6)\text{cos} \left( t + \frac{\pi}{6} \right) = \text{cos} \, t \cdot \text{cos} \left( \frac{\pi}{6} \right) - \text{sin} \, t \cdot \text{sin} \left( \frac{\pi}{6} \right) Substituting the values,\ \text{cos} \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2} ext{ and } \text{sin} \left( \frac{\pi}{6} \right) = \frac{1}{2}$:

x=4(32cost12sint)x = 4 \left( \frac{\sqrt{3}}{2} \text{cos} \, t - \frac{1}{2} \text{sin} \, t \right)

This simplifies to:

x=23cost2sintx = 2\sqrt{3} \text{cos} \, t - 2 \text{sin} \, t

Combining with the equation for yy: x+y=23cost2sint+2sintx + y = 2\sqrt{3} \text{cos} \, t - 2 \text{sin} \, t + 2\text{sin} \, t

So, x+y=23costx + y = 2\sqrt{3} \text{cos} \, t

Thus, we have shown that x+y=23costx + y = 2 \sqrt{3} \, \text{cos} \, t.

Step 2

Show that a cartesian equation of C is $(x + y)^2 + a y^2 = b$

99%

104 rated

Answer

First, we start from the derived equation:

x+y=23costx + y = 2 \sqrt{3} \text{cos} \, t

Square both sides: (x+y)2=(23cost)2(x + y)^2 = (2 \sqrt{3} \text{cos} \, t)^2 =12cos2t= 12 \text{cos}^2 \, t

Now, using the identity sin2t+cos2t=1\text{sin}^2 \, t + \text{cos}^2 \, t = 1: From the equation y=2sinty = 2\text{sin} \, t, we express sint\text{sin} \, t as: sint=y2\text{sin} \, t = \frac{y}{2} Thus, we have:
cos2t=1(y2)2=4y24\text{cos}^2 \, t = 1 - \left(\frac{y}{2}\right)^2 = \frac{4 - y^2}{4}

Now substitute cos2t\text{cos}^2 \, t into our earlier equation:

(x+y)2=124y24=3(4y2)=123y2 (x + y)^2 = 12 \cdot \frac{4 - y^2}{4} = 3(4 - y^2) = 12 - 3y^2

Rearranging gives: (x+y)2+3y2=12(x + y)^2 + 3y^2 = 12

Thus, we conclude that a Cartesian equation of C is: (x+y)2+3y2=12(x + y)^2 + 3y^2 = 12

Identifying a=3a = 3 and b=12b = 12, where aa and bb are integers.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;