Photo AI

The random variable Z ~ N(0, 1) A is the event Z > 1.1 B is the event Z < -1.9 C is the event -1.5 < Z < 1.5 (a) Find (i) P(A) (ii) P(B) (iii) P(C) (iv) P(A ∪ C) The random variable X has a normal distribution with mean 21 and standard deviation 5 (b) Find the value of w such that P(X > w | X > 28) = 0.625 - Edexcel - A-Level Maths Statistics - Question 6 - 2015 - Paper 1

Question icon

Question 6

The-random-variable-Z-~-N(0,-1)-A-is-the-event-Z->-1.1-B-is-the-event-Z-<--1.9-C-is-the-event--1.5-<-Z-<-1.5--(a)-Find-(i)-P(A)-(ii)-P(B)-(iii)-P(C)-(iv)-P(A-∪-C)--The-random-variable-X-has-a-normal-distribution-with-mean-21-and-standard-deviation-5-(b)-Find-the-value-of-w-such-that-P(X->-w-|-X->-28)-=-0.625-Edexcel-A-Level Maths Statistics-Question 6-2015-Paper 1.png

The random variable Z ~ N(0, 1) A is the event Z > 1.1 B is the event Z < -1.9 C is the event -1.5 < Z < 1.5 (a) Find (i) P(A) (ii) P(B) (iii) P(C) (iv) P(A ∪ C) T... show full transcript

Worked Solution & Example Answer:The random variable Z ~ N(0, 1) A is the event Z > 1.1 B is the event Z < -1.9 C is the event -1.5 < Z < 1.5 (a) Find (i) P(A) (ii) P(B) (iii) P(C) (iv) P(A ∪ C) The random variable X has a normal distribution with mean 21 and standard deviation 5 (b) Find the value of w such that P(X > w | X > 28) = 0.625 - Edexcel - A-Level Maths Statistics - Question 6 - 2015 - Paper 1

Step 1

Find (i) P(A)

96%

114 rated

Answer

To find P(A), we need to calculate P(Z > 1.1). Using the cumulative distribution function (CDF) for a standard normal distribution:

P(Z>1.1)=1P(Z1.1)P(Z > 1.1) = 1 - P(Z \leq 1.1) Using Z-tables or a calculator, we find:

P(Z1.1)0.8643P(Z \leq 1.1) \approx 0.8643 Thus,

P(A)=10.8643=0.1357P(A) = 1 - 0.8643 = 0.1357

Step 2

Find (ii) P(B)

99%

104 rated

Answer

To calculate P(B), we determine P(Z < -1.9):

Using the CDF:

P(Z<1.9)0.9713P(Z < -1.9) \approx 0.9713 So,

P(B)=0.9713P(B) = 0.9713

Step 3

Find (iii) P(C)

96%

101 rated

Answer

For event C, we need P(-1.5 < Z < 1.5):

Using the CDF:

P(1.5<Z<1.5)=P(Z<1.5)P(Z<1.5)P(-1.5 < Z < 1.5) = P(Z < 1.5) - P(Z < -1.5) From Z-tables:

P(Z<1.5)0.9332P(Z<1.5)0.9332P(Z < 1.5) \approx 0.9332 \\ P(Z < -1.5) \approx 0.9332 Thus,

P(C)=0.9332(10.9332)=0.8664P(C) = 0.9332 - (1 - 0.9332) = 0.8664

Step 4

Find (iv) P(A ∪ C)

98%

120 rated

Answer

To find P(A ∪ C), we can use the formula:

P(AC)=P(A)+P(C)P(AC)P(A ∪ C) = P(A) + P(C) - P(A ∩ C) Since A and C are independent, we find:

P(AC)=P(A)P(C)P(A ∩ C) = P(A) * P(C) Calculating values:

(P(A) \approx 0.1357, \ P(C) \approx 0.8664$$
Thus,

P(AC)=0.1357+0.8664(0.13570.8664)0.9332P(A ∪ C) = 0.1357 + 0.8664 - (0.1357 * 0.8664) \approx 0.9332

Step 5

Find (b) the value of w such that P(X > w | X > 28) = 0.625

97%

117 rated

Answer

Using the formula for conditional probability:

P(X>wX>28)=P(X>wX>28)P(X>28)P(X > w | X > 28) = \frac{P(X > w \, \cap \, X > 28)}{P(X > 28)} This implies:

P(X>w)=0.625P(X>28)P(X > w) = 0.625 * P(X > 28) Given that X is normally distributed with mean 21 and standard deviation 5, we first find:

P(X>28)=1P(X28)P(X > 28) = 1 - P(X \leq 28) Calculating:

P(X28)=P(Z28215)=P(Z1.4)0.9192P(X \leq 28) = P(Z \leq \frac{28 - 21}{5}) = P(Z \leq 1.4) \approx 0.9192 Thus:

P(X>28)0.0808P(X > 28) \approx 0.0808 Next, substituting back:

P(X>w)=0.6250.0808=0.0500P(X > w) = 0.625 * 0.0808 = 0.0500 Now find w using the inverse CDF, leading to:

w29.2w \approx 29.2

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;