Photo AI

The discrete random variable X has probability distribution given by | x | -1 | 0 | 1 | 2 | 3 | |-----|------|------|------|-----|-----| | P(X = x) | 1/5 | a | 1/10 | a | 1/5 | where a is a constant - Edexcel - A-Level Maths Statistics - Question 3 - 2010 - Paper 2

Question icon

Question 3

The-discrete-random-variable-X-has-probability-distribution-given-by--|-x---|--1---|-0----|-1----|-2---|-3---|-|-----|------|------|------|-----|-----|-|-P(X-=-x)-|-1/5-|-a-|-1/10-|-a-|-1/5-|---where-a-is-a-constant-Edexcel-A-Level Maths Statistics-Question 3-2010-Paper 2.png

The discrete random variable X has probability distribution given by | x | -1 | 0 | 1 | 2 | 3 | |-----|------|------|------|-----|-----| | P(X = x) | ... show full transcript

Worked Solution & Example Answer:The discrete random variable X has probability distribution given by | x | -1 | 0 | 1 | 2 | 3 | |-----|------|------|------|-----|-----| | P(X = x) | 1/5 | a | 1/10 | a | 1/5 | where a is a constant - Edexcel - A-Level Maths Statistics - Question 3 - 2010 - Paper 2

Step 1

Find the value of a.

96%

114 rated

Answer

To find the value of aa, use the fact that the total probability must equal 1:

P(X=1)+P(X=0)+P(X=1)+P(X=2)+P(X=3)=1P(X = -1) + P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 1

Substituting the given probabilities:

15+a+110+a+15=1\frac{1}{5} + a + \frac{1}{10} + a + \frac{1}{5} = 1

Combining like terms:

15+15+110+2a=1\frac{1}{5} + \frac{1}{5} + \frac{1}{10} + 2a = 1

Converting to a common denominator (10):

210+110+2a=1\frac{2}{10} + \frac{1}{10} + 2a = 1

310+2a=1\frac{3}{10} + 2a = 1

Subtracting 310\frac{3}{10} from both sides:

2a=1310=1010310=7102a = 1 - \frac{3}{10} = \frac{10}{10} - \frac{3}{10} = \frac{7}{10}

Dividing by 2:

a=720=0.35.a = \frac{7}{20} = 0.35.

Step 2

Write down E(X).

99%

104 rated

Answer

The expected value E(X)E(X) is calculated using the formula:

E(X)=xxP(X=x)E(X) = \sum_{x} x P(X = x)

Substituting the values:

E(X)=(1)15+0720+1110+2720+315E(X) = (-1) \cdot \frac{1}{5} + 0 \cdot \frac{7}{20} + 1 \cdot \frac{1}{10} + 2 \cdot \frac{7}{20} + 3 \cdot \frac{1}{5}

Calculating each term:

=15+0+110+1420+35= -\frac{1}{5} + 0 + \frac{1}{10} + \frac{14}{20} + \frac{3}{5}

Converting 35\frac{3}{5} to a tenth denominator:

=210+0+110+1420+610= -\frac{2}{10} + 0 + \frac{1}{10} + \frac{14}{20} + \frac{6}{10}

Combining:

=2+1+3+710=910=3.1.= \frac{-2 + 1 + 3 + 7}{10} = \frac{9}{10} = 3.1.

Step 3

Find Var(X).

96%

101 rated

Answer

To calculate the variance Var(X)Var(X), use the formula:

Var(X)=E(X2)(E(X))2Var(X) = E(X^2) - (E(X))^2

First, we find E(X2)E(X^2):

E(X2)=xx2P(X=x)E(X^2) = \sum_{x} x^2 P(X = x)

Calculating:

=(1)215+02720+12110+22720+3215= (-1)^2 \cdot \frac{1}{5} + 0^2 \cdot \frac{7}{20} + 1^2 \cdot \frac{1}{10} + 2^2 \cdot \frac{7}{20} + 3^2 \cdot \frac{1}{5}

=115+0+110+4720+915= 1 \cdot \frac{1}{5} + 0 + \frac{1}{10} + 4 \cdot \frac{7}{20} + 9 \cdot \frac{1}{5}

Calculating each term:

=15+0+110+2820+95= \frac{1}{5} + 0 + \frac{1}{10} + \frac{28}{20} + \frac{9}{5}

Converting 95\frac{9}{5} and 15\frac{1}{5} to a tenths denominator:

=2+0+1+14+1810=3510=3.5= \frac{2 + 0 + 1 + 14 + 18}{10} = \frac{35}{10} = 3.5

Now, substituting back into the variance formula:

Var(X)=E(X2)(E(X))2=3.5(3.1)2=3.59.61=2.21.Var(X) = E(X^2) - (E(X))^2 = 3.5 - (3.1)^2 = 3.5 - 9.61 = 2.21.

Step 4

Find Var(Y).

98%

120 rated

Answer

The variance of YY, where Y=62XY = 6 - 2X, can be found using the transformation rule for variance. Since the variance of a constant multiplied by a random variable is:

Var(aX)=a2Var(X)Var(aX) = a^2 Var(X)

we have:

Var(Y)=Var(62X)=4Var(X)=42.21=8.84.Var(Y) = Var(6 - 2X) = 4 Var(X) = 4 \cdot 2.21 = 8.84.

Step 5

Calculate P(X ≥ Y).

97%

117 rated

Answer

To find the probability P(XY)P(X ≥ Y), first consider the cases when Y=62XY = 6 - 2X is equal or less than XX:

  1. If X=1X = -1, then Y=8Y = 8.
  2. If X=0X = 0, then Y=6Y = 6.
  3. If X=1X = 1, then Y=4Y = 4.
  4. If X=2X = 2, then Y=2Y = 2.
  5. If X=3X = 3, then Y=0Y = 0.

The valid cases for XYX ≥ Y are:

  • When X=2X = 2 and Y2Y ≤ 2, which has:
    • Probability of P(X=2)=a=720P(X = 2) = a = \frac{7}{20}.
  • When X=3X = 3, which is always true since YY would never exceed XX.
    • Probability of P(X=3)=15=210P(X = 3) = \frac{1}{5} = \frac{2}{10}.

Therefore, the total probability is:

P(XY)=P(X=2)+P(X=3)=720+15=720+420=1120.P(X ≥ Y) = P(X = 2) + P(X = 3) = \frac{7}{20} + \frac{1}{5} = \frac{7}{20} + \frac{4}{20} = \frac{11}{20}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;