Photo AI

The random variable $X$ has probability function $$P(X = x) = \frac{(2x - 1)}{36}$$ for $x = 1, 2, 3, 4, 5, 6$ - Edexcel - A-Level Maths Statistics - Question 3 - 2007 - Paper 1

Question icon

Question 3

The-random-variable-$X$-has-probability-function-$$P(X-=-x)-=-\frac{(2x---1)}{36}$$-for-$x-=-1,-2,-3,-4,-5,-6$-Edexcel-A-Level Maths Statistics-Question 3-2007-Paper 1.png

The random variable $X$ has probability function $$P(X = x) = \frac{(2x - 1)}{36}$$ for $x = 1, 2, 3, 4, 5, 6$. (a) Construct a table giving the probability distrib... show full transcript

Worked Solution & Example Answer:The random variable $X$ has probability function $$P(X = x) = \frac{(2x - 1)}{36}$$ for $x = 1, 2, 3, 4, 5, 6$ - Edexcel - A-Level Maths Statistics - Question 3 - 2007 - Paper 1

Step 1

Construct a table giving the probability distribution of X.

96%

114 rated

Answer

To find the probability distribution of the random variable XX, we calculate P(X=x)P(X = x) for each xx:

xxP(X=x)P(X = x)
1136\frac{1}{36}
2336=112\frac{3}{36} = \frac{1}{12}
3536\frac{5}{36}
4736\frac{7}{36}
5936=14\frac{9}{36} = \frac{1}{4}
61136\frac{11}{36}

The complete probability distribution table is now:

xxP(X=x)P(X = x)
10.0278
20.0833
30.1390
40.1944
50.25
60.305

Step 2

P(2 < X < 5)

99%

104 rated

Answer

To find P(2<X<5)P(2 < X < 5), we need to sum the probabilities for X=3X = 3 and X=4X = 4:

P(2<X<5)=P(X=3)+P(X=4)=536+736=1236=13extor0.333.P(2 < X < 5) = P(X = 3) + P(X = 4) = \frac{5}{36} + \frac{7}{36} = \frac{12}{36} = \frac{1}{3} ext{ or } 0.333.

Step 3

the exact value of E(X)

96%

101 rated

Answer

The expected value E(X)E(X) is calculated as:

E(X)=x=16xP(X=x)=1136+2336+3536+4736+5936+61136E(X) = \sum_{x=1}^{6} x \cdot P(X = x) = 1 \cdot \frac{1}{36} + 2 \cdot \frac{3}{36} + 3 \cdot \frac{5}{36} + 4 \cdot \frac{7}{36} + 5 \cdot \frac{9}{36} + 6 \cdot \frac{11}{36}

Calculating each term:

=136+636+1536+2836+4536+6636= \frac{1}{36} + \frac{6}{36} + \frac{15}{36} + \frac{28}{36} + \frac{45}{36} + \frac{66}{36}

=1+6+15+28+45+6636=161364.472.= \frac{1 + 6 + 15 + 28 + 45 + 66}{36} = \frac{161}{36} \approx 4.472.

Step 4

Show that Var(X) = 1.97 to 3 significant figures.

98%

120 rated

Answer

Variance is calculated using the formula:

Var(X)=E(X2)(E(X))2.Var(X) = E(X^2) - (E(X))^2.
First, calculate E(X2)E(X^2):

E(X2)=x=16x2P(X=x)=12136+22336+32536+42736+52936+621136E(X^2) = \sum_{x=1}^{6} x^2 \cdot P(X = x) = 1^2 \cdot \frac{1}{36} + 2^2 \cdot \frac{3}{36} + 3^2 \cdot \frac{5}{36} + 4^2 \cdot \frac{7}{36} + 5^2 \cdot \frac{9}{36} + 6^2 \cdot \frac{11}{36}

Calculating each term:

=136+1236+4536+11236+22536+39636= \frac{1}{36} + \frac{12}{36} + \frac{45}{36} + \frac{112}{36} + \frac{225}{36} + \frac{396}{36}

=79136.= \frac{791}{36}.

Now substituting in the variance formula:

Var(X)=79136(16136)2=79136259211296Var(X) = \frac{791}{36} - \left( \frac{161}{36} \right)^2 = \frac{791}{36} - \frac{25921}{1296}

Perform the calculation to obtain:

Var(X)1.971.Var(X) \approx 1.971.

Step 5

Find Var(2 - 3X).

97%

117 rated

Answer

Using the property of variance:

Var(aX+b)=a2Var(X)Var(aX + b) = a^2\cdot Var(X)
For our case, a=3a = -3 and b=2b = 2:

Var(23X)=(3)2Var(X)=91.971=17.739.Var(2 - 3X) = (-3)^2 \cdot Var(X) = 9 \cdot 1.971 = 17.739.

Rounding to 2 significant figures gives us 17.74.17.74.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;