Photo AI

A discrete random variable $X$ has the probability function $$P(X = x) = \begin{cases} k(1 - x)^2 & x = -1, 0, 1 \ 0 & \text{otherwise} \end{cases}$$ (a) Show that $k = \frac{1}{6}$ (b) Find $E(X)$ (c) Show that $E(X^2) = \frac{4}{3}$ (d) Find $Var(1 - 3X)$ - Edexcel - A-Level Maths Statistics - Question 1 - 2012 - Paper 2

Question icon

Question 1

A-discrete-random-variable-$X$-has-the-probability-function--$$P(X-=-x)-=-\begin{cases}-k(1---x)^2-&-x-=--1,-0,-1-\-0-&-\text{otherwise}-\end{cases}$$--(a)-Show-that-$k-=-\frac{1}{6}$--(b)-Find-$E(X)$--(c)-Show-that-$E(X^2)-=-\frac{4}{3}$--(d)-Find-$Var(1---3X)$-Edexcel-A-Level Maths Statistics-Question 1-2012-Paper 2.png

A discrete random variable $X$ has the probability function $$P(X = x) = \begin{cases} k(1 - x)^2 & x = -1, 0, 1 \ 0 & \text{otherwise} \end{cases}$$ (a) Show that... show full transcript

Worked Solution & Example Answer:A discrete random variable $X$ has the probability function $$P(X = x) = \begin{cases} k(1 - x)^2 & x = -1, 0, 1 \ 0 & \text{otherwise} \end{cases}$$ (a) Show that $k = \frac{1}{6}$ (b) Find $E(X)$ (c) Show that $E(X^2) = \frac{4}{3}$ (d) Find $Var(1 - 3X)$ - Edexcel - A-Level Maths Statistics - Question 1 - 2012 - Paper 2

Step 1

Show that $k = \frac{1}{6}$

96%

114 rated

Answer

To find the value of kk, we use the property that the sum of all probabilities must equal 1:

P(X=1)+P(X=0)+P(X=1)=1P(X = -1) + P(X = 0) + P(X = 1) = 1

Calculating each probability:

  • For x=1x = -1:
    P(X=1)=k(1(1))2=k(2)2=4kP(X = -1) = k(1 - (-1))^2 = k(2)^2 = 4k

  • For x=0x = 0:
    P(X=0)=k(10)2=k(1)2=kP(X = 0) = k(1 - 0)^2 = k(1)^2 = k

  • For x=1x = 1:
    P(X=1)=k(11)2=k(0)2=0P(X = 1) = k(1 - 1)^2 = k(0)^2 = 0

So, we compute:

4k+k+0=14k + k + 0 = 1

This simplifies to:

5k=15k = 1

Thus, solving for kk gives:

k=15k = \frac{1}{5}

Step 2

Find $E(X)$

99%

104 rated

Answer

To find the expected value, we use the formula:

E(X)=xxP(X=x)E(X) = \sum_{x} x P(X = x)

Calculating:

E(X)=(1)P(X=1)+(0)P(X=0)+(1)P(X=1)E(X) = (-1)P(X = -1) + (0)P(X = 0) + (1)P(X = 1)

Substituting the values:

E(X)=(1)(4k)+(0)(k)+(1)(0)=4kE(X) = (-1)(4k) + (0)(k) + (1)(0) = -4k

Now substituting k=16k = \frac{1}{6}:

E(X)=416=23E(X) = -4 \cdot \frac{1}{6} = -\frac{2}{3}

Step 3

Show that $E(X^2) = \frac{4}{3}$

96%

101 rated

Answer

We calculate E(X2)E(X^2) using:

E(X2)=xx2P(X=x)E(X^2) = \sum_{x} x^2 P(X = x)

Calculating:

E(X2)=(1)2P(X=1)+(0)2P(X=0)+(1)2P(X=1)E(X^2) = (-1)^2 P(X = -1) + (0)^2 P(X = 0) + (1)^2 P(X = 1)

Substituting:

E(X2)=(1)(4k)+(0)(k)+(1)(0)=4kE(X^2) = (1)(4k) + (0)(k) + (1)(0) = 4k

Now, substituting k=16k = \frac{1}{6}:

E(X2)=416=46=23E(X^2) = 4 \cdot \frac{1}{6} = \frac{4}{6} = \frac{2}{3}

Step 4

Find $Var(1 - 3X)$

98%

120 rated

Answer

Variance can be calculated using the formula:

Var(aX+b)=a2Var(X)Var(aX + b) = a^2 Var(X)

For our case, we have:

Var(13X)=(3)2Var(X)=9Var(X)Var(1 - 3X) = (-3)^2 Var(X) = 9 Var(X)

Next, we need to find Var(X)Var(X), which is given by:

Var(X)=E(X2)(E(X))2Var(X) = E(X^2) - (E(X))^2

Substituting our previously calculated values:

Var(X)=23(23)2=2349Var(X) = \frac{2}{3} - \left(-\frac{2}{3}\right)^2 = \frac{2}{3} - \frac{4}{9}

Converting to a common denominator:

Var(X)=6949=29Var(X) = \frac{6}{9} - \frac{4}{9} = \frac{2}{9}

Thus, substituting back:

Var(13X)=929=2Var(1 - 3X) = 9 \cdot \frac{2}{9} = 2

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;