Photo AI

The random variable $X$ has probability function $$P(X = x) = \frac{(2x - 1)}{36}$$ where $x = 1, 2, 3, 4, 5, 6$ - Edexcel - A-Level Maths Statistics - Question 3 - 2007 - Paper 1

Question icon

Question 3

The-random-variable-$X$-has-probability-function--$$P(X-=-x)-=-\frac{(2x---1)}{36}$$--where-$x-=-1,-2,-3,-4,-5,-6$-Edexcel-A-Level Maths Statistics-Question 3-2007-Paper 1.png

The random variable $X$ has probability function $$P(X = x) = \frac{(2x - 1)}{36}$$ where $x = 1, 2, 3, 4, 5, 6$. (a) Construct a table giving the probability dis... show full transcript

Worked Solution & Example Answer:The random variable $X$ has probability function $$P(X = x) = \frac{(2x - 1)}{36}$$ where $x = 1, 2, 3, 4, 5, 6$ - Edexcel - A-Level Maths Statistics - Question 3 - 2007 - Paper 1

Step 1

Construct a table giving the probability distribution of X

96%

114 rated

Answer

To construct the probability distribution table, we calculate P(X=x)P(X = x) for each value of xx:

xxP(X=x)P(X = x)
1136\frac{1}{36} = 0.0278
2336\frac{3}{36} = 0.0833
3536\frac{5}{36} = 0.1390
4736\frac{7}{36} = 0.1944
5936\frac{9}{36} = 0.25
61136\frac{11}{36} = 0.306

Step 2

P(2 < X < 5)

99%

104 rated

Answer

To find P(2<X<5)P(2 < X < 5), we add the probabilities for X=3X = 3 and X=4X = 4:

P(2<X<5)=P(X=3)+P(X=4)=536+736=1236=13P(2 < X < 5) = P(X = 3) + P(X = 4) = \frac{5}{36} + \frac{7}{36} = \frac{12}{36} = \frac{1}{3}

The decimal approximation is 0.333.

Step 3

the exact value of E(X)

96%

101 rated

Answer

To calculate the expected value E(X)E(X), we use:

E(X)=x=16xP(X=x)E(X) = \sum_{x=1}^{6} x \cdot P(X = x)

Calculating each term:

  • For x=1x=1: 1136=1361 \cdot \frac{1}{36} = \frac{1}{36}
  • For x=2x=2: 2336=6362 \cdot \frac{3}{36} = \frac{6}{36}
  • For x=3x=3: 3536=15363 \cdot \frac{5}{36} = \frac{15}{36}
  • For x=4x=4: 4736=28364 \cdot \frac{7}{36} = \frac{28}{36}
  • For x=5x=5: 5936=45365 \cdot \frac{9}{36} = \frac{45}{36}
  • For x=6x=6: 61136=66366 \cdot \frac{11}{36} = \frac{66}{36}

Summing these gives:

E(X)=1+6+15+28+45+6636=161364.472E(X) = \frac{1 + 6 + 15 + 28 + 45 + 66}{36} = \frac{161}{36} \approx 4.472

Step 4

Show that Var(X) = 1.97 to 3 significant figures

98%

120 rated

Answer

To show Var(X)Var(X), we calculate E(X2)E(X^2) first:

E(X2)=x=16x2P(X=x)E(X^2) = \sum_{x=1}^{6} x^2 \cdot P(X = x)

Calculating each term:

  • For x=1x=1: 12136=1361^2 \cdot \frac{1}{36} = \frac{1}{36}
  • For x=2x=2: 22336=12362^2 \cdot \frac{3}{36} = \frac{12}{36}
  • For x=3x=3: 32536=45363^2 \cdot \frac{5}{36} = \frac{45}{36}
  • For x=4x=4: 42736=112364^2 \cdot \frac{7}{36} = \frac{112}{36}
  • For x=5x=5: 52936=225365^2 \cdot \frac{9}{36} = \frac{225}{36}
  • For x=6x=6: 621136=396366^2 \cdot \frac{11}{36} = \frac{396}{36}

Summing these gives:

E(X2)=1+12+45+112+225+39636=79136E(X^2) = \frac{1 + 12 + 45 + 112 + 225 + 396}{36} = \frac{791}{36}

Now we calculate the variance:

Var(X)=E(X2)(E(X))2=79136(16136)2=79136259211296Var(X) = E(X^2) - (E(X))^2 = \frac{791}{36} - \left(\frac{161}{36}\right)^2 = \frac{791}{36} - \frac{25921}{1296}

Calculating gives:

Var(X)1.97Var(X) \approx 1.97

Step 5

Find Var(2 - 3X)

97%

117 rated

Answer

To find Var(23X)Var(2 - 3X), we apply the variance scaling rule:

Var(aX+b)=a2Var(X)Var(aX + b) = a^2 Var(X)

Here, a=3a = -3 and b=2b = 2:

Var(23X)=(3)2Var(X)=9imes1.97=17.73Var(2 - 3X) = (-3)^2 Var(X) = 9 imes 1.97 = 17.73

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;