To simplify (x2+4)2−(x2−2)2, we can again use the difference of squares formula.
Let:
- A=x2+4
- B=x2−2
Then we have:
(x2+4)2−(x2−2)2=A2−B2=(A−B)(A+B)
Now calculate A−B and A+B:
-
Calculate A−B:
A−B=(x2+4)−(x2−2)=4+2=6
-
Calculate A+B:
A+B=(x2+4)+(x2−2)=2x2+2
Putting it all together, we have:
(x2+4)2−(x2−2)2=(6)(2x2+2)=12(x2+1)
Thus, the fully simplified expression is:
12(x2+1)