Photo AI

15 (a) Factorise $a^2 - b^2$ (b) Hence, or otherwise, simplify fully $(x^2 + 4)^2 - (x^2 - 2)^2$ - Edexcel - GCSE Maths - Question 15 - 2018 - Paper 1

Question icon

Question 15

15-(a)-Factorise-$a^2---b^2$--(b)-Hence,-or-otherwise,-simplify-fully-$(x^2-+-4)^2---(x^2---2)^2$-Edexcel-GCSE Maths-Question 15-2018-Paper 1.png

15 (a) Factorise $a^2 - b^2$ (b) Hence, or otherwise, simplify fully $(x^2 + 4)^2 - (x^2 - 2)^2$

Worked Solution & Example Answer:15 (a) Factorise $a^2 - b^2$ (b) Hence, or otherwise, simplify fully $(x^2 + 4)^2 - (x^2 - 2)^2$ - Edexcel - GCSE Maths - Question 15 - 2018 - Paper 1

Step 1

Factorise $a^2 - b^2$

96%

114 rated

Answer

The expression a2b2a^2 - b^2 can be factorised using the difference of squares formula, which states that:

a2b2=(ab)(a+b)a^2 - b^2 = (a - b)(a + b)

Thus, the factorisation of a2b2a^2 - b^2 is:

(ab)(a+b)(a - b)(a + b)

Step 2

Hence, or otherwise, simplify fully $(x^2 + 4)^2 - (x^2 - 2)^2$

99%

104 rated

Answer

To simplify (x2+4)2(x22)2(x^2 + 4)^2 - (x^2 - 2)^2, we can again use the difference of squares formula.

Let:

  • A=x2+4A = x^2 + 4
  • B=x22B = x^2 - 2

Then we have:

(x2+4)2(x22)2=A2B2=(AB)(A+B)(x^2 + 4)^2 - (x^2 - 2)^2 = A^2 - B^2 = (A - B)(A + B)

Now calculate ABA - B and A+BA + B:

  1. Calculate ABA - B:

    AB=(x2+4)(x22)=4+2=6A - B = (x^2 + 4) - (x^2 - 2) = 4 + 2 = 6

  2. Calculate A+BA + B:

    A+B=(x2+4)+(x22)=2x2+2A + B = (x^2 + 4) + (x^2 - 2) = 2x^2 + 2

Putting it all together, we have:

(x2+4)2(x22)2=(6)(2x2+2)=12(x2+1) (x^2 + 4)^2 - (x^2 - 2)^2 = (6)(2x^2 + 2) = 12(x^2 + 1)

Thus, the fully simplified expression is:

12(x2+1)12(x^2 + 1)

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;