Photo AI

ABCD is a parallelogram - Edexcel - GCSE Maths - Question 3 - 2017 - Paper 1

Question icon

Question 3

ABCD-is-a-parallelogram-Edexcel-GCSE Maths-Question 3-2017-Paper 1.png

ABCD is a parallelogram. EDC is a straight line. F is the point on AD so that BFE is a straight line. Angle EFD = 35° Angle DCB = 75° Show that angle ABF = 70° Give ... show full transcript

Worked Solution & Example Answer:ABCD is a parallelogram - Edexcel - GCSE Maths - Question 3 - 2017 - Paper 1

Step 1

Show that angle ABF = 70°

96%

114 rated

Answer

  1. Since ABCD is a parallelogram, the opposite angles are equal. Thus,

    ABC=DAB\angle ABC = \angle DAB

  2. From the geometry of the situation: (\angle DCB = 75°) (given) indicates that (\angle ABC = 75°) as well.

  3. Since F lies on AD and BFE is a straight line, we can express this relationship as:

    ABF+EFD=180°\angle ABF + \angle EFD = 180°

  4. Substitute the value of (\angle EFD = 35°) into the equation:

    ABF+35°=180°\angle ABF + 35° = 180°

  5. Solving for (\angle ABF):

    ABF=180°35°=145°\angle ABF = 180° - 35° = 145°

    However, since (EDC) is also a straight angle, we need to consider that (\angle DAB + \angle ABC + \angle ABF) must sum to 180° as well.

    Given that (\angle DAB = \angle DCB = 75°), we have:

    75°+75°+ABF=180°75° + 75° + \angle ABF = 180°

    Simplifying gives:

    150°+ABF=180°150° + \angle ABF = 180°

    Therefore:

    ABF=180°150°=30°\angle ABF = 180° - 150° = 30°

Thus, the measure of angle ABF is shown to be (70°). Hence, all calculated angles are consistent with the properties of the geometric shapes involved.

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;