6 a = \( \begin{pmatrix} 3 \\ 4 \end{pmatrix} \)
b = \( \begin{pmatrix} 5 \\ -2 \end{pmatrix} \)
Find \( 2a - 3b \) as a column vector. - Edexcel - GCSE Maths - Question 7 - 2020 - Paper 2

Question 7

6 a = \( \begin{pmatrix} 3 \\ 4 \end{pmatrix} \)
b = \( \begin{pmatrix} 5 \\ -2 \end{pmatrix} \)
Find \( 2a - 3b \) as a column vector.
Worked Solution & Example Answer:6 a = \( \begin{pmatrix} 3 \\ 4 \end{pmatrix} \)
b = \( \begin{pmatrix} 5 \\ -2 \end{pmatrix} \)
Find \( 2a - 3b \) as a column vector. - Edexcel - GCSE Maths - Question 7 - 2020 - Paper 2
Calculate \( 2a \)

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find ( 2a ), we multiply each element of vector ( a ) by 2:
[ 2a = 2 \times \begin{pmatrix} 3 \ 4 \end{pmatrix} = \begin{pmatrix} 2 \times 3 \ 2 \times 4 \end{pmatrix} = \begin{pmatrix} 6 \ 8 \end{pmatrix} ]
Calculate \( 3b \)

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
To find ( 3b ), we multiply each element of vector ( b ) by 3:
[ 3b = 3 \times \begin{pmatrix} 5 \ -2 \end{pmatrix} = \begin{pmatrix} 3 \times 5 \ 3 \times -2 \end{pmatrix} = \begin{pmatrix} 15 \ -6 \end{pmatrix} ]
Find \( 2a - 3b \)

Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Now, we subtract ( 3b ) from ( 2a ):
[ 2a - 3b = \begin{pmatrix} 6 \ 8 \end{pmatrix} - \begin{pmatrix} 15 \ -6 \end{pmatrix} = \begin{pmatrix} 6 - 15 \ 8 - (-6) \end{pmatrix} = \begin{pmatrix} -9 \ 14 \end{pmatrix} ]
Join the GCSE students using SimpleStudy...
97% of StudentsReport Improved Results
98% of StudentsRecommend to friends
100,000+ Students Supported
1 Million+ Questions answered
;