Photo AI

CDEF is a quadrilateral - Edexcel - GCSE Maths - Question 1 - 2019 - Paper 2

Question icon

Question 1

CDEF-is-a-quadrilateral-Edexcel-GCSE Maths-Question 1-2019-Paper 2.png

CDEF is a quadrilateral. $$ \vec{CD} = \mathbf{a}, \quad \vec{DE} = \mathbf{b} \quad \text{and} \quad \vec{CF} = \mathbf{a} - \mathbf{b}. $$ (a) Express $\vec{FE}$... show full transcript

Worked Solution & Example Answer:CDEF is a quadrilateral - Edexcel - GCSE Maths - Question 1 - 2019 - Paper 2

Step 1

Express $\vec{FE}$ in terms of $\mathbf{a}$ and $\mathbf{b}$

96%

114 rated

Answer

To express FE\vec{FE}, we can use the relationships between the vectors provided. We know that:

  1. Start from point FF:
    We can express F\vec{F} in terms of C\vec{C} and DE\vec{DE}:

    F=C+CF=C+(ab).\vec{F} = \vec{C} + \vec{CF} = \vec{C} + (\mathbf{a} - \mathbf{b}).

  2. Next, we find E\vec{E} in terms of D\vec{D} and DE\vec{DE}:

    E=D+DE=C+a+b.\vec{E} = \vec{D} + \vec{DE} = \vec{C} + \mathbf{a} + \mathbf{b}.

  3. Using these expressions, we can find FE\vec{FE}:

    FE=EF=(C+a+b)(C+(ab)).\vec{FE} = \vec{E} - \vec{F} = \left(\vec{C} + \mathbf{a} + \mathbf{b}\right) - \left(\vec{C} + (\mathbf{a} - \mathbf{b})\right).

    Simplifying this, we get:

    FE=b+b=2b.\vec{FE} = \mathbf{b} + \mathbf{b} = 2\mathbf{b}.

Step 2

Work out the value of n

99%

104 rated

Answer

Given that MM is the midpoint of DEDE and XX is the point on FMFM such that FX:XM=n:1FX : XM = n:1 and CVECVE is a straight line:

  1. Since MM is the midpoint, we can express: M=D+E2.\vec{M} = \frac{\vec{D} + \vec{E}}{2}. Substituting for D\vec{D} and E\vec{E}:

    M=(C+a)+(C+a+b)2=C+a+b2.\vec{M} = \frac{\left(\vec{C} + \mathbf{a}\right) + \left(\vec{C} + \mathbf{a} + \mathbf{b}\right)}{2} = \vec{C} + \mathbf{a} + \frac{\mathbf{b}}{2}.

  2. Now, we can express XX on line FMFM:

    X=nn+1F+1n+1M.\vec{X} = \frac{n}{n + 1} \vec{F} + \frac{1}{n + 1} \vec{M}.

  3. Using the conditions for collinearity of C,V,EC, V, E, we can find nn. By equating the ratios of segments, we derive:

    n+1=2 (from balance of weights)n + 1 = 2 \text{ (from balance of weights)}, yielding: n=1.n = 1.

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;