Photo AI

ABCDEF GHI is a cuboid - Edexcel - GCSE Maths - Question 20 - 2022 - Paper 2

Question icon

Question 20

ABCDEF-GHI-is-a-cuboid-Edexcel-GCSE Maths-Question 20-2022-Paper 2.png

ABCDEF GHI is a cuboid. AD = 9 cm FD = 13 cm Angle GHF = 49°. Work out the size of angle FAH. Give your answer correct to the nearest degree.

Worked Solution & Example Answer:ABCDEF GHI is a cuboid - Edexcel - GCSE Maths - Question 20 - 2022 - Paper 2

Step 1

Work out the size of angle FAH

96%

114 rated

Answer

To find angle FAH, we can use the cosine rule in triangle AFD. We know the lengths of two sides and the included angle.

  1. Identify the given lengths:

    • AD = 9 cm
    • FD = 13 cm
    • Angle GHF = 49° implies angle AFG = 90° - 49° = 41°.
  2. Using the sine rule:

    • In triangle AFG, applying the sine rule:

    AFsin(GHF)=ADsin(FAH)\frac{AF}{\sin(GHF)} = \frac{AD}{\sin(FAH)}

    We need to find AF first. To find AF, we can use the cosine rule in triangle AFD:

    AF2=AD2+FD22ADFDcos(41°)AF^2 = AD^2 + FD^2 - 2 \cdot AD \cdot FD \cdot \cos(41°)

    AF2=92+1322913cos(41°)AF^2 = 9^2 + 13^2 - 2 \cdot 9 \cdot 13 \cdot \cos(41°)

    Calculate AF:

    AF2=81+169234cos(41°)2502340.7547250176.83AF^2 = 81 + 169 - 234 \cdot \cos(41°) \approx 250 - 234 \cdot 0.7547\approx 250 - 176.83

    So,

    AF273.17AF8.55cmAF^2 \approx 73.17 \Rightarrow AF \approx 8.55cm

  3. Calculating angle FAH: Now plug this in the sine rule:

    AFsin(49°)=9sin(FAH)\frac{AF}{\sin(49°)} = \frac{9}{\sin(FAH)} Rearranging gives:

    sin(FAH)=9sin(49°)AF\sin(FAH) = \frac{9 \cdot \sin(49°)}{AF}

    Substitute the value of AF:

    sin(FAH)=9sin(49°)8.55\sin(FAH) = \frac{9 \cdot \sin(49°)}{8.55}

    Compute:

    • Assume ( \sin(49°) \approx 0.7547 ) ( \sin(FAH) \approx \frac{9 \cdot 0.7547}{8.55} \approx 0.7933 )
  4. Final step: To find angle FAH: ( FAH = \arcsin(0.7933) \approx 52.4° ) Rounding gives angle FAH = 52°.

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;