Photo AI

Sketch the graph of $y = an^2 x$ for $0 ext{ °} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } 0 ext{ °} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } 360 ext{ °}$ - Edexcel - GCSE Maths - Question 12 - 2018 - Paper 3

Question icon

Question 12

Sketch-the-graph-of--$y-=--an^2-x$-for-$0--ext{-°}--ext{-}---ext{-}---ext{-}--ext{-}---ext{-}--ext{-}--ext{-}---ext{-}--ext{-}---ext{-}---ext{-}---ext{-}---ext{-}---ext{-}-0--ext{-°}--ext{-}---ext{-}---ext{-}--ext{-}---ext{-}---ext{-}---ext{-}---ext{-}---ext{-}---ext{-}---ext{-}---ext{-}---ext{-}---ext{-}-360--ext{-°}$-Edexcel-GCSE Maths-Question 12-2018-Paper 3.png

Sketch the graph of $y = an^2 x$ for $0 ext{ °} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ... show full transcript

Worked Solution & Example Answer:Sketch the graph of $y = an^2 x$ for $0 ext{ °} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } 0 ext{ °} ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } 360 ext{ °}$ - Edexcel - GCSE Maths - Question 12 - 2018 - Paper 3

Step 1

Sketch the graph of $y = an^2 x$ between $0$ and $360$

96%

114 rated

Answer

To sketch the graph of y=an2xy = an^2 x, begin by identifying key characteristics of the function:

Key Points:

  1. Periodicity: The function y=an2xy = an^2 x has a period of 180°180°. Therefore, we will observe the behavior over the interval [0,180°][0, 180°] and then replicate it for [180°,360°][180°, 360°].
  2. Behavior at Asymptotes: The function has vertical asymptotes at x=90°x = 90° and x=270°x = 270° where anx an x is undefined. This means that as xx approaches these points from the left and right, the function will tend towards infinity.

Graph Sketching Steps:

  • Start your graph on the left at (0,0)(0, 0) since an2(0)=0 an^2(0) = 0.
  • As xx approaches 90°90°, the function will rise sharply towards infinity, indicating a vertical asymptote here.
  • After 90°90°, the function will drop back down to 00 at 180°180° as an2(180°)=0 an^2(180°) = 0.
  • Reflect this behavior in the interval from 180°180° to 360°360° with another vertical asymptote at 270°270° and return back to 00 at $360°.

Conclusion:

Your final sketch should show a repeating pattern between these key points, with clear asymptotic behavior at the relevant angles.

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;