Photo AI

Work out the value of $$\left( \frac{5^{\frac{4}{9}}}{2^{-1}} \times \left(\frac{4}{3}\right)^{\frac{2}{3}} \right)$$ You must show all your working. - Edexcel - GCSE Maths - Question 19 - 2022 - Paper 1

Question icon

Question 19

Work-out-the-value-of--$$\left(-\frac{5^{\frac{4}{9}}}{2^{-1}}-\times-\left(\frac{4}{3}\right)^{\frac{2}{3}}-\right)$$-You-must-show-all-your-working.--Edexcel-GCSE Maths-Question 19-2022-Paper 1.png

Work out the value of $$\left( \frac{5^{\frac{4}{9}}}{2^{-1}} \times \left(\frac{4}{3}\right)^{\frac{2}{3}} \right)$$ You must show all your working.

Worked Solution & Example Answer:Work out the value of $$\left( \frac{5^{\frac{4}{9}}}{2^{-1}} \times \left(\frac{4}{3}\right)^{\frac{2}{3}} \right)$$ You must show all your working. - Edexcel - GCSE Maths - Question 19 - 2022 - Paper 1

Step 1

Calculate the square root with reciprocal

96%

114 rated

Answer

First, we rewrite the expression:

(54921×(43)23)=549×(4/3)2321\left( \frac{5^{\frac{4}{9}}}{2^{-1}} \times \left(\frac{4}{3}\right)^{\frac{2}{3}} \right) = \frac{5^{\frac{4}{9}} \times (4/3)^{\frac{2}{3}}}{2^{-1}}

The reciprocal of 212^{-1} is 212^{1}, so we have:

=549×(4/3)23×2 = 5^{\frac{4}{9}} \times (4/3)^{\frac{2}{3}} \times 2

Step 2

Simplify the numerator

99%

104 rated

Answer

Now we simplify the numerator:

a=(4/3)23=423323=16393a = (4/3)^{\frac{2}{3}} = \frac{4^{\frac{2}{3}}}{3^{\frac{2}{3}}} = \frac{\sqrt[3]{16}}{\sqrt[3]{9}}

Thus, substituting back:

=549×16393×2 = 5^{\frac{4}{9}} \times \frac{\sqrt[3]{16}}{\sqrt[3]{9}} \times 2

Step 3

Final calculation

96%

101 rated

Answer

Now let's perform the final calculation:

By combining these we have:

Value=2×549×16393\text{Value} = 2 \times 5^{\frac{4}{9}} \times \frac{\sqrt[3]{16}}{\sqrt[3]{9}}

This expression simplifies further, and you can compute the numerical value using a calculator to get the final result.

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;