We can use the quadratic formula to solve for y:
y=2a−b±b2−4ac
For our equation 7y2−8y−15=0, we have:
- a=7
- b=−8
- c=−15
Calculating the discriminant:
D=(−8)2−4⋅7⋅(−15)=64+420=484
Now applying the quadratic formula:
y=148±484=148±22
This gives us two possible values for y:
\text{and} \\
y_2 = \frac{-14}{14} = -1$$