Photo AI

7 (a) Write the number 0.00008623 in standard form - Edexcel - GCSE Maths - Question 8 - 2018 - Paper 2

Question icon

Question 8

7-(a)-Write-the-number-0.00008623-in-standard-form-Edexcel-GCSE Maths-Question 8-2018-Paper 2.png

7 (a) Write the number 0.00008623 in standard form. (b) Work out $$\frac{3.2 \times 10^{10} + 5.1 \times 10^{-2}}{4.3 \times 10^{4}}$$ Give your answer in standar... show full transcript

Worked Solution & Example Answer:7 (a) Write the number 0.00008623 in standard form - Edexcel - GCSE Maths - Question 8 - 2018 - Paper 2

Step 1

Write the number 0.00008623 in standard form.

96%

114 rated

Answer

The number 0.00008623 can be expressed in standard form as follows:

Firstly, we identify the significant digits, which in this case are 8623. We need to represent this in the form of a×10na \times 10^n where 1a<101 \leq a < 10.

The significant digits 8623 can be written as: 8.623×1058.623 \times 10^{-5}

Thus, the number 0.00008623 in standard form is:

8.623×1058.623 \times 10^{-5}.

Step 2

Work out $$\frac{3.2 \times 10^{10} + 5.1 \times 10^{-2}}{4.3 \times 10^{4}}$$

99%

104 rated

Answer

To solve the expression, we first compute the numerator and then the entire fraction.

Step 1: Compute the numerator

We need to handle 3.2×1010+5.1×1023.2 \times 10^{10} + 5.1 \times 10^{-2}. Since these terms have different exponents, we will convert them to have the same exponent before adding:

Converting 5.1×1025.1 \times 10^{-2} to the same exponent as 101010^{10}: 5.1×102=5.1×102×10101010=5.1×1085.1 \times 10^{-2} = 5.1 \times 10^{-2} \times \frac{10^{10}}{10^{10}} = 5.1 \times 10^{8}

Adding these values: 3.2×1010+5.1×108=3.2000000000×1010+0.000000051×10103.2 \times 10^{10} + 5.1 \times 10^{8} = 3.2000000000 \times 10^{10} + 0.000000051 \times 10^{10} =(3.200000051)×1010= (3.200000051) \times 10^{10}

Step 2: Compute the entire expression

Now, substituting this back, we have: (3.200000051)×10104.3×104\frac{(3.200000051) \times 10^{10}}{4.3 \times 10^{4}}

Next, we simplify: =(3.200000051/4.3)×10(104)= (3.200000051 / 4.3) \times 10^{(10-4)} =0.744186imes106= 0.744186 imes 10^{6}

Step 3: Convert to standard form

To express this in standard form, we can write: 7.44186×1057.44186 \times 10^{5}

When rounded to three significant figures, the final answer is:

7.44×1057.44 \times 10^{5}.

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;