Photo AI

Calculate. a) \( \sqrt{\frac{4.8^8 + 3.6^6}{4}} \) b) \( \frac{1}{(2 \times 10^4) + (5 \times 10^3)} \) - OCR - GCSE Maths - Question 1 - 2017 - Paper 1

Question icon

Question 1

Calculate.-a)-\(-\sqrt{\frac{4.8^8-+-3.6^6}{4}}-\)--b)-\(-\frac{1}{(2-\times-10^4)-+-(5-\times-10^3)}-\)-OCR-GCSE Maths-Question 1-2017-Paper 1.png

Calculate. a) \( \sqrt{\frac{4.8^8 + 3.6^6}{4}} \) b) \( \frac{1}{(2 \times 10^4) + (5 \times 10^3)} \)

Worked Solution & Example Answer:Calculate. a) \( \sqrt{\frac{4.8^8 + 3.6^6}{4}} \) b) \( \frac{1}{(2 \times 10^4) + (5 \times 10^3)} \) - OCR - GCSE Maths - Question 1 - 2017 - Paper 1

Step 1

a) \( \sqrt{\frac{4.8^8 + 3.6^6}{4}} \)

96%

114 rated

Answer

To solve the expression, first calculate ( 4.8^8 ) and ( 3.6^6 ):

  1. Calculate ( 4.8^8 ): [ 4.8^8 = 65536 ]

  2. Calculate ( 3.6^6 ): [ 3.6^6 = 729 ]

  3. Add the results: [ 65536 + 729 = 66265 ]

  4. Now, divide by 4: [ \frac{66265}{4} = 16566.25 ]

  5. Finally, take the square root: [ \sqrt{16566.25} = 128.7 \approx 3 ]

Step 2

b) \( \frac{1}{(2 \times 10^4) + (5 \times 10^3)} \)

99%

104 rated

Answer

First, simplify the expression inside the denominator:

  1. Calculate the two parts:

    • First part: ( 2 \times 10^4 = 20000 )
    • Second part: ( 5 \times 10^3 = 5000 )
  2. Add the two values: [ 20000 + 5000 = 25000 ]

  3. Now compute the final answer: [ \frac{1}{25000} = 0.00004 ]

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;