Photo AI

2 (a) Simplify - OCR - GCSE Maths - Question 2 - 2017 - Paper 1

Question icon

Question 2

2-(a)-Simplify-OCR-GCSE Maths-Question 2-2017-Paper 1.png

2 (a) Simplify. (i) $a^6 + a^2$ (ii) $(b^5)^3$ (b) Factorise. $6x - x^2$

Worked Solution & Example Answer:2 (a) Simplify - OCR - GCSE Maths - Question 2 - 2017 - Paper 1

Step 1

(i) $a^6 + a^2$

96%

114 rated

Answer

To simplify the expression a6+a2a^6 + a^2, we can factor out the common factor. The greatest common factor between the two terms is a2a^2. Therefore, we have:

a6+a2=a2(a4+1)a^6 + a^2 = a^2(a^4 + 1)

Step 2

(ii) $(b^5)^3$

99%

104 rated

Answer

To simplify the expression (b5)3(b^5)^3, we will apply the power of a power property of exponents, which states that (xm)n=xmn(x^m)^n = x^{mn}. Thus, we get:

(b5)3=b5imes3=b15(b^5)^3 = b^{5 imes 3} = b^{15}

Step 3

(b) Factorise. $6x - x^2$

96%

101 rated

Answer

To factorise the expression 6xx26x - x^2, we begin by noticing that both terms have a common factor, which is xx. Therefore, we can factor xx out:

6xx2=x(6x)6x - x^2 = x(6 - x)

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;