Photo AI

Use the formula $x_{n+1} = \frac{(x_n)^3}{30} + 2$ with $x_1 = 2$ to calculate $x_2$ and $x_3$ - OCR - GCSE Maths - Question 15 - 2018 - Paper 6

Question icon

Question 15

Use-the-formula-$x_{n+1}-=-\frac{(x_n)^3}{30}-+-2$-with-$x_1-=-2$-to-calculate-$x_2$-and-$x_3$-OCR-GCSE Maths-Question 15-2018-Paper 6.png

Use the formula $x_{n+1} = \frac{(x_n)^3}{30} + 2$ with $x_1 = 2$ to calculate $x_2$ and $x_3$. Round your answers correct to 4 decimal places.

Worked Solution & Example Answer:Use the formula $x_{n+1} = \frac{(x_n)^3}{30} + 2$ with $x_1 = 2$ to calculate $x_2$ and $x_3$ - OCR - GCSE Maths - Question 15 - 2018 - Paper 6

Step 1

Calculate $x_2$

96%

114 rated

Answer

To find x2x_2, we use the formula:

x2=(x1)330+2x_2 = \frac{(x_1)^3}{30} + 2

Substituting x1=2x_1 = 2:

x2=(2)330+2=830+2=0.2667+2=2.2667x_2 = \frac{(2)^3}{30} + 2 = \frac{8}{30} + 2 = 0.2667 + 2 = 2.2667

Thus, x2=2.2667x_2 = 2.2667.

Step 2

Calculate $x_3$

99%

104 rated

Answer

Using the value of x2x_2 to find x3x_3:

x3=(x2)330+2x_3 = \frac{(x_2)^3}{30} + 2

Substituting x2=2.2667x_2 = 2.2667:

x3=(2.2667)330+2=11.617930+2=0.3873+2=2.3873x_3 = \frac{(2.2667)^3}{30} + 2 = \frac{11.6179}{30} + 2 = 0.3873 + 2 = 2.3873

Thus, x3=2.3873x_3 = 2.3873.

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;