Photo AI

The diagram shows triangle ABC with D on AC and E on AB - OCR - GCSE Maths - Question 14 - 2017 - Paper 1

Question icon

Question 14

The-diagram-shows-triangle-ABC-with-D-on-AC-and-E-on-AB-OCR-GCSE Maths-Question 14-2017-Paper 1.png

The diagram shows triangle ABC with D on AC and E on AB. DE is a straight line. AD = 28 m, AE = 41 m, DE = 22 m and BC = 64 m. Calculate the length CD.

Worked Solution & Example Answer:The diagram shows triangle ABC with D on AC and E on AB - OCR - GCSE Maths - Question 14 - 2017 - Paper 1

Step 1

Calculate angle A

96%

114 rated

Answer

To find the angle A in triangle ADE, we can apply the cosine rule:

cosA=AD2+AE2DE22ADAE\cos A = \frac{AD^2 + AE^2 - DE^2}{2 \cdot AD \cdot AE}

Substituting the given values:

cosA=282+41222222841\cos A = \frac{28^2 + 41^2 - 22^2}{2 \cdot 28 \cdot 41}

Calculating each term:

  • 282=78428^2 = 784, 412=168141^2 = 1681, 222=48422^2 = 484.
  • Therefore, we have:

cosA=784+168148422841=19812296\cos A = \frac{784 + 1681 - 484}{2 \cdot 28 \cdot 41} = \frac{1981}{2296}

Thus, we calculate angle A as:

A=cos1(19812296)36.3A = \cos^{-1}\left(\frac{1981}{2296}\right) \approx 36.3^{\circ}

Step 2

Find angle DAE

99%

104 rated

Answer

Since DE is a straight line, we can find angle DAE using:

DAE=180A72DAE = 180^{\circ} - A - 72^{\circ}

Substituting the value of angle A:

DAE=18036.372=71.7DAE = 180^{\circ} - 36.3^{\circ} - 72^{\circ} = 71.7^{\circ}

Step 3

Calculate length CD using the Sine Rule

96%

101 rated

Answer

Now we can apply the sine rule in triangle ACD:

CDsinA=ACsinDAE\frac{CD}{\sin A} = \frac{AC}{\sin DAE}

First, we need to find the length AC:

Using the cosine rule again:

AC2=AD2+DE22ADDEcosAAC^2 = AD^2 + DE^2 - 2 \cdot AD \cdot DE \cdot \cos A

Substituting for AC:

  • Using the earlier found values, we get:

AC2=282+22222822cos(36.3)AC^2 = 28^2 + 22^2 - 2 \cdot 28 \cdot 22 \cdot \cos(36.3^{\circ})

Calculating these terms will yield the necessary lengths to find CD:

Rearranging the sine rule for CD then gives:

CD=ACsinAsinDAECD = \frac{AC \cdot \sin A}{\sin DAE}

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;