Photo AI

Work out. a) \( \begin{pmatrix} -3 \\ 2 \end{pmatrix} + \begin{pmatrix} 5 \\ 7 \end{pmatrix} \) b) \( \begin{pmatrix} 3 \\ 4 \end{pmatrix} -2 \begin{pmatrix} 1 \\ -3 \end{pmatrix} \) - OCR - GCSE Maths - Question 3 - 2018 - Paper 1

Question icon

Question 3

Work-out.-a)-\(-\begin{pmatrix}--3-\\-2-\end{pmatrix}-+-\begin{pmatrix}-5-\\-7-\end{pmatrix}-\)--b)-\(-\begin{pmatrix}-3-\\-4-\end{pmatrix}--2--\begin{pmatrix}-1-\\--3-\end{pmatrix}-\)-OCR-GCSE Maths-Question 3-2018-Paper 1.png

Work out. a) \( \begin{pmatrix} -3 \\ 2 \end{pmatrix} + \begin{pmatrix} 5 \\ 7 \end{pmatrix} \) b) \( \begin{pmatrix} 3 \\ 4 \end{pmatrix} -2 \begin{pmatrix} 1 \\... show full transcript

Worked Solution & Example Answer:Work out. a) \( \begin{pmatrix} -3 \\ 2 \end{pmatrix} + \begin{pmatrix} 5 \\ 7 \end{pmatrix} \) b) \( \begin{pmatrix} 3 \\ 4 \end{pmatrix} -2 \begin{pmatrix} 1 \\ -3 \end{pmatrix} \) - OCR - GCSE Maths - Question 3 - 2018 - Paper 1

Step 1

(a)

96%

114 rated

Answer

To compute the sum of the vectors, we add the corresponding components:

(32)+(57)=(3+52+7)=(29)\begin{pmatrix} -3 \\ 2 \end{pmatrix} + \begin{pmatrix} 5 \\ 7 \end{pmatrix} = \begin{pmatrix}-3 + 5 \\ 2 + 7\end{pmatrix} = \begin{pmatrix}2 \\ 9\end{pmatrix}

Thus, the answer for part (a) is:

(29)\begin{pmatrix} 2 \\ 9 \end{pmatrix}

Step 2

(b)

99%

104 rated

Answer

For part (b), we first multiply the scalar by the vector:

2(13)=(2×12×3)=(26)2 \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \times 1 \\ 2 \times -3 \end{pmatrix} = \begin{pmatrix} 2 \\ -6 \end{pmatrix}

Then, we subtract this result from the first vector:

(34)(26)=(324(6))=(110)\begin{pmatrix} 3 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ -6 \end{pmatrix} = \begin{pmatrix} 3 - 2 \\ 4 - (-6) \end{pmatrix} = \begin{pmatrix} 1 \\ 10 \end{pmatrix}

Thus, the answer for part (b) is:

(110)\begin{pmatrix} 1 \\ 10 \end{pmatrix}

Join the GCSE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;