Photo AI

Given that $f(x) = 4 \sin \left( 3x - \frac{\pi}{3} \right)$, evaluate $f'\left( \frac{\pi}{6} \right)$. - Scottish Highers Maths - Question 12 - 2022

Question icon

Question 12

Given-that-$f(x)-=-4-\sin-\left(-3x---\frac{\pi}{3}-\right)$,-evaluate-$f'\left(-\frac{\pi}{6}-\right)$.-Scottish Highers Maths-Question 12-2022.png

Given that $f(x) = 4 \sin \left( 3x - \frac{\pi}{3} \right)$, evaluate $f'\left( \frac{\pi}{6} \right)$.

Worked Solution & Example Answer:Given that $f(x) = 4 \sin \left( 3x - \frac{\pi}{3} \right)$, evaluate $f'\left( \frac{\pi}{6} \right)$. - Scottish Highers Maths - Question 12 - 2022

Step 1

Start to Differentiate

96%

114 rated

Answer

To find the derivative f(x)f'(x) of the function, we utilize the chain rule. The derivative of sin(u)\sin(u), where u=3xπ3u = 3x - \frac{\pi}{3}, is cos(u)u\cos(u) \cdot u'. Thus, we have:

f(x)=4cos(3xπ3)(3)=12cos(3xπ3)f'(x) = 4 \cos \left( 3x - \frac{\pi}{3} \right) \cdot (3) = 12 \cos \left( 3x - \frac{\pi}{3} \right)

Step 2

Evaluate Derivative

99%

104 rated

Answer

Next, we need to evaluate the derivative at x=π6x = \frac{\pi}{6}:

f(π6)=12cos(3(π6)π3)f'\left( \frac{\pi}{6} \right) = 12 \cos \left( 3\left( \frac{\pi}{6} \right) - \frac{\pi}{3} \right)

Calculating inside the cosine:

3(π6)=π23 \left( \frac{\pi}{6} \right) = \frac{\pi}{2}

Thus,

f(π6)=12cos(π2π3) =12cos(π6)f'\left( \frac{\pi}{6} \right) = 12 \cos \left( \frac{\pi}{2} - \frac{\pi}{3} \right)\ = 12 \cos \left( -\frac{\pi}{6} \right)

Using the property that cos(x)=cos(x)\cos(-x) = \cos(x):

=12cos(π6)= 12 \cos \left( \frac{\pi}{6} \right)

Now, we know that cos(π6)=32\cos\left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2}:

f(π6)=1232=63f'\left( \frac{\pi}{6} \right) = 12 \cdot \frac{\sqrt{3}}{2} = 6\sqrt{3}

Join the Scottish Highers students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;